A Grothendieck topos of generalized functions I: basic theory

被引:1
作者
Giordano, Paolo [1 ]
Kunzinger, Michael [1 ]
Vernaeve, Hans [2 ]
机构
[1] Univ Vienna, Vienna, Austria
[2] Univ Ghent, Ghent, Belgium
基金
奥地利科学基金会;
关键词
generalized functions; nonlinear functional analysis; non-Archimedean analysis; topos; INTERNAL SETS; RING; FOUNDATIONS; TOPOLOGIES; INVERSION; CALCULUS; NOTION; FULL;
D O I
10.4064/dm230920-7-3
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The main aim of the present work is to arrive at a mathematical theory close to the historically original conception of generalized functions, i.e. set-theoretical functions defined on, and with values in, a suitable ring of scalars and sharing a number of fundamental properties with smooth functions, in particular with respect to composition and nonlinear operations. This is how they are still used in informal calculations in physics. We introduce a category of generalized functions as smooth set-theoretical maps on (multidimensional) points of a ring of scalars containing infinitesimals and infinities. This category extends Schwartz distributions. The calculus of these generalized functions is closely related to classical analysis, with point values, composition, nonlinear operations and the generalization of several classical theorems of calculus. Finally, we extend this category of generalized functions to a Grothendieck topos of sheaves over a concrete site. This topos hence provides a suitable framework for the study of spaces and functions with singularities. In this first paper, we present the basic theory; subsequent ones will be devoted to the resulting theory of ODE and PDE.
引用
收藏
页码:1 / 74
页数:74
相关论文
共 120 条
  • [1] Abbati M. C., DIFFERENTIAL GEOMETR
  • [2] Abraham R., 1988, Manifolds, Tensors, Analysis, and Applications, V2
  • [3] A discontinuous colombeau differential calculus
    Aragona, J
    Fernandez, R
    Juriaans, SO
    [J]. MONATSHEFTE FUR MATHEMATIK, 2005, 144 (01): : 13 - 29
  • [4] Differential calculus and integration of generalized functions over membranes
    Aragona, Jorge
    Fernandez, Roseli
    Juriaans, Stanley O.
    Oberguggenberger, Michael
    [J]. MONATSHEFTE FUR MATHEMATIK, 2012, 166 (01): : 1 - 18
  • [5] Aragona J, 2009, TOPOL METHOD NONL AN, V34, P161
  • [6] CONVENIENT CATEGORIES OF SMOOTH SPACES
    Baez, John C.
    Hoffnung, Alexander E.
    [J]. TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2011, 363 (11) : 5789 - 5825
  • [7] HIGHER-ORDER SHOCK-WAVES
    BAMPI, F
    ZORDAN, C
    [J]. ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 1990, 41 (01): : 12 - 19
  • [8] Bar C., 2007, ESI LECT MATH PHYS
  • [9] Bell J. L., 1998, A primer of infinitesimal analysis
  • [10] Biagioni H.A., 1990, Lecture Notes Mathematics, V1421