Fast computation of generalized dedekind sums

被引:0
作者
Tranbarger, Preston [1 ]
Wang, Jessica [2 ]
机构
[1] Texas A&M Univ, Dept Math, College Stn, TX 77843 USA
[2] Humboldt Univ, Dept Math, D-10117 Berlin, Germany
基金
美国国家科学基金会;
关键词
Dedekind sums; Reidemeister rewriting process;
D O I
10.1142/S179304212450060X
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We construct an algorithm that reduces the complexity for computing generalized Dedekind sums from exponential to polynomial time. We do so by using an efficient word rewriting process in group theory.
引用
收藏
页码:1219 / 1232
页数:14
相关论文
共 11 条
[1]  
Beck M., 2015, UNDER GRADUATE TEXTS, V154
[2]   An average of generalized Dedekind sums [J].
Dillon, Travis ;
Gaston, Stephanie .
JOURNAL OF NUMBER THEORY, 2020, 212 :323-338
[3]  
IWANIEC H, 1997, GRADUATE STUDIES MAT, V17
[4]  
Knuth D., 1997, seminumerical algorithms, VVol. 2
[5]   Reciprocity and the kernel of Dedekind sums [J].
LaBelle, Alexis ;
Van Bergeyk, Emily ;
Young, Matthew P. .
RESEARCH IN NUMBER THEORY, 2023, 9 (04)
[6]  
Magnus A., 2004, COMBINATORIAL GROUP
[7]   Algebraic properties of the values of newform Dedekind sums [J].
Majure, Mitchell .
JOURNAL OF NUMBER THEORY, 2023, 250 :35-48
[8]   The kernel of newform Dedekind sums [J].
Nguyen, Evuilynn ;
Ramirez, Juan J. ;
Young, Matthew P. .
JOURNAL OF NUMBER THEORY, 2021, 223 :53-63
[9]  
RADEMACHER H, 1972, DEDEKIND SUMS, DOI DOI 10.5948/UPO9781614440161
[10]  
Stein W., 2007, GRADUATE STUDIES MAT, V79