Model-Based FPGA Implementation of a 6-DoF Dynamical Model Accelerator

被引:0
作者
Memis, Sezer [1 ,2 ]
Yeniceri, Ramazan [2 ,3 ]
机构
[1] Istanbul Tech Univ, Aviat Inst, TR-34469 Istanbul, Turkiye
[2] ITU Aerosp Res Ctr ITU ARC, Avion Lab, TR-34467 Istanbul, Turkiye
[3] Istanbul Tech Univ, Fac Aeronaut & Astronaut, TR-34467 Istanbul, Turkiye
来源
IEEE ACCESS | 2024年 / 12卷
关键词
Mathematical models; Computational modeling; Field programmable gate arrays; Hardware design languages; Hardware; 6-DOF; Atmospheric modeling; 6-DoF; FPGA; model-based design; high-level synthesis; dynamics; quadrotor; HIGH-LEVEL SYNTHESIS; PREDICTIVE CONTROL;
D O I
10.1109/ACCESS.2024.3381502
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
The mathematical model of 6-DoF dynamics is used in different applications. In general, software-based solutions are utilized to implement the 6-DoF dynamic model. This paper introduces the FPGA-based implementation of the 6-DoF dynamics accelerator. The proposed hardware-based approach ensures the accuracy of the nonlinear model without compromising computational speed. The model-based approach and high-level synthesis have been employed in the design and implementation stages. Regarding design strategy, standard processor architecture, and resource-sharing methods have been applied to achieve FPGA resource efficiency. Seven datapath and finite state machines have been designed for seven different subsystems. The design resulted in hardware blocks that can execute all non-linear model equations 396 times in 1 ms using fixed/floating-point hybrid case and 434 times using pure fixed-point case. The model equations, which took an average of 0.4986 s to simulate in the Simulink environment, have been run on an FPGA in 7.1924 mu s. For seven design cases, numerical errors, resource utilization, and timing metrics are tabulated and presented to the reader.
引用
收藏
页码:45279 / 45298
页数:20
相关论文
共 47 条
  • [1] A Survey of Parallel Implementations for Model Predictive Control
    Abughalieh, Karam M.
    Alawneh, Shadi G.
    [J]. IEEE ACCESS, 2019, 7 : 34348 - 34360
  • [2] Bridging Python']Python to Silicon: The SODA Toolchain
    Agostini, Nicolas Bohm
    Curzel, Serena
    Zhang, Jeff
    Limaye, Ankur
    Tan, Cheng
    Amatya, Vinay
    Minutoli, Marco
    Castellana, Vito Giovanni
    Manzano, Joseph
    Brooks, David
    Wei, Gu-Yeon
    Tumeo, Antonino
    [J]. IEEE MICRO, 2022, 42 (05) : 78 - 88
  • [3] Beard R. W., 2012, SMALL UNMANNED AIRCR, DOI DOI 10.1515/9781400840601
  • [4] Biggs B, 2022, arXiv
  • [5] Biswas B., 2013, J MATH ANAL APPL, V1, P2090
  • [6] Model-Based Design for Software Defined Radio on an FPGA
    Cai, Xin
    Zhou, Mingda
    Huang, Xinming
    [J]. IEEE ACCESS, 2017, 5 : 8276 - 8283
  • [7] Curzel S., 2023, PROC 20 ACM INT C CO, DOI [10.1145/3587135.3592766, DOI 10.1145/3587135.3592766]
  • [8] RFlySim: Automatic test platform for UAV autopilot systems with FPGA-based hardware-in-the-loop simulations
    Dai, Xunhua
    Ke, Chenxu
    Quan, Quan
    Cai, Kai-Yuan
    [J]. AEROSPACE SCIENCE AND TECHNOLOGY, 2021, 114
  • [9] A Parameterizable Chisel Generator of Numerically Controlled Oscillators for Direct Digital Synthesis
    Damnjanovic, Vukan D.
    Petrovic, Marija L.
    Milovanovic, Vladimir M.
    [J]. 2021 24TH INTERNATIONAL SYMPOSIUM ON DESIGN AND DIAGNOSTICS OF ELECTRONIC CIRCUITS & SYSTEMS (DDECS), 2021, : 141 - 144
  • [10] Pushing the Level of Abstraction of Digital System Design: A Survey on How to Program FPGAs
    Del Sozzo, Emanuele
    Conficconi, Davide
    Zeni, Alberto
    Salaris, Mirko
    Sciuto, Donatella
    Santambrogio, Marco D.
    [J]. ACM COMPUTING SURVEYS, 2023, 55 (05)