Oxidative Stress and Cerebral Vascular Tone: The Role of Reactive Oxygen and Nitrogen Species

被引:9
|
作者
Salvagno, Michele [1 ]
Sterchele, Elda Diletta [1 ]
Zaccarelli, Mario [1 ]
Mrakic-Sposta, Simona [2 ]
Welsby, Ian James [3 ]
Balestra, Costantino [4 ,5 ,6 ,7 ]
Taccone, Fabio Silvio [1 ]
机构
[1] Hop Univ Bruxelles HUB, Dept Intens Care, B-1000 Brussels, Belgium
[2] Natl Res Council CNR IFC, Inst Clin Physiol, I-20133 Milan, Italy
[3] Duke Univ, Dept Anesthesiol, Med Ctr, Durham, NC 27710 USA
[4] Haute Ecole Bruxelles Brabant HE2B, Environm Occupat Aging Integrat Physiol Lab, B-1160 Brussels, Belgium
[5] Vrije Univ Brussels VUB, Anat Res & Clin Studies, B-1050 Elsene, Belgium
[6] DAN Europe Res Div Roseto Brussels, B-1160 Brussels, Belgium
[7] Univ Libre Bruxelles ULB, Motor Sci Dept, Phys Act Teaching Unit, B-1050 Brussels, Belgium
关键词
oxidants; reactive oxygen species; reactive nitrogen species; antioxidants; cerebral vascular tone; NITRIC-OXIDE SYNTHASE; BLOOD-FLOW; SUBARACHNOID HEMORRHAGE; N-ACETYLCYSTEINE; VITAMIN-E; NITROXYL HNO; BRAIN-INJURY; DEPENDENT VASODILATION; CEREBROSPINAL-FLUID; POTASSIUM CHANNELS;
D O I
10.3390/ijms25053007
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
The brain's unique characteristics make it exceptionally susceptible to oxidative stress, which arises from an imbalance between reactive oxygen species (ROS) production, reactive nitrogen species (RNS) production, and antioxidant defense mechanisms. This review explores the factors contributing to the brain's vascular tone's vulnerability in the presence of oxidative damage, which can be of clinical interest in critically ill patients or those presenting acute brain injuries. The brain's high metabolic rate and inefficient electron transport chain in mitochondria lead to significant ROS generation. Moreover, non-replicating neuronal cells and low repair capacity increase susceptibility to oxidative insult. ROS can influence cerebral vascular tone and permeability, potentially impacting cerebral autoregulation. Different ROS species, including superoxide and hydrogen peroxide, exhibit vasodilatory or vasoconstrictive effects on cerebral blood vessels. RNS, particularly NO and peroxynitrite, also exert vasoactive effects. This review further investigates the neuroprotective effects of antioxidants, including superoxide dismutase (SOD), vitamin C, vitamin E, and the glutathione redox system. Various studies suggest that these antioxidants could be used as adjunct therapies to protect the cerebral vascular tone under conditions of high oxidative stress. Nevertheless, more extensive research is required to comprehensively grasp the relationship between oxidative stress and cerebrovascular tone, and explore the potential benefits of antioxidants as adjunctive therapies in critical illnesses and acute brain injuries.
引用
收藏
页数:25
相关论文
共 50 条
  • [31] Role of vascular reactive oxygen species in development of vascular abnormalities in diabetes
    Son, Seok Man
    DIABETES RESEARCH AND CLINICAL PRACTICE, 2007, 77 : S65 - S70
  • [32] Hypothesis: The role of reactive sulfur species in oxidative stress
    Giles, GI
    Tasker, KM
    Jacob, C
    FREE RADICAL BIOLOGY AND MEDICINE, 2001, 31 (10) : 1279 - 1283
  • [33] Reactive oxygen species: Metabolism, oxidative stress, and signal transduction
    Apel, K
    Hirt, H
    ANNUAL REVIEW OF PLANT BIOLOGY, 2004, 55 : 373 - 399
  • [34] Oxidative stress and the influence of reactive oxygen species on the function of semen
    Jedlinska-Krakowska, M
    MEDYCYNA WETERYNARYJNA-VETERINARY MEDICINE-SCIENCE AND PRACTICE, 2005, 61 (10): : 1122 - 1123
  • [35] REACTIVE OXYGEN SPECIES AND OXIDATIVE STRESS IN CANINE SEMEN FRACTIONS
    Lucio, C. F.
    Nichi, M.
    Regazzi, F. M.
    Ruck, T. F.
    Silva, L. C. G.
    Vannucchi, C. I.
    REPRODUCTION FERTILITY AND DEVELOPMENT, 2010, 22 (01) : 313 - 313
  • [36] Melatonin, reactive oxygen species (ROS) and oxidative stress.
    Lahiri, DK
    Ghosh, C
    JOURNAL OF NEUROCHEMISTRY, 2000, 74 : S75 - S75
  • [37] Synergistic activity of acetohydroxamic acid on prokaryotes under oxidative stress: The role of reactive nitrogen species
    Yadav, Reeta
    Goldstein, Sara
    Nasef, Mohamed O.
    Lee, Wendy
    Samuni, Uri
    FREE RADICAL BIOLOGY AND MEDICINE, 2014, 77 : 291 - 297
  • [38] Approaches for Reactive Oxygen Species and Oxidative Stress Quantification in Epilepsy
    Olowe, Rhoda
    Sandouka, Sereen
    Saadi, Aseel
    Shekh-Ahmad, Tawfeeq
    ANTIOXIDANTS, 2020, 9 (10) : 1 - 26
  • [39] Reactive Oxygen and Nitrogen Species in Carcinogenesis: Implications of Oxidative Stress on the Progression and Development of Several Cancer Types
    Kruk, Joanna
    Aboul-Enein, Hassan Y.
    MINI-REVIEWS IN MEDICINAL CHEMISTRY, 2017, 17 (11) : 904 - 919
  • [40] The role of reactive oxygen species and oxidative stress in carbon monoxide toxicity: An in-depth analysis
    Akyol, Sumeyya
    Erdogan, Serpil
    Idiz, Nuri
    Celik, Safa
    Kaya, Mehmet
    Ucar, Fatma
    Dane, Senol
    Akyol, Omer
    REDOX REPORT, 2014, 19 (05) : 180 - 189