Recent advances of silicon-based solid-state lithium-ion batteries

被引:7
作者
Chen, Xin [1 ,2 ]
Fu, Chuankai [1 ,2 ]
Wang, Yuanheng [1 ,2 ]
Yan, Jiaxin [1 ,2 ]
Ma, Yulin [1 ,2 ]
Huo, Hua [1 ,2 ]
Zuo, Pengjian [1 ,2 ,3 ]
Yin, Geping [1 ,2 ]
Gao, Yunzhi [1 ,2 ]
机构
[1] Harbin Inst Technol, State Key Lab Space Power Sources, Harbin 150001, Peoples R China
[2] Harbin Inst Technol, Sch Chem & Chem Engn, MIIT Key Lab Crit Mat Technol New Energy Convers &, Harbin 150001, Peoples R China
[3] Chongqing Res Inst, Harbin Inst Technol, Chongqing 401135, Peoples R China
基金
中国国家自然科学基金; 中国博士后科学基金;
关键词
SIZE-DEPENDENT FRACTURE; IN-SITU MEASUREMENTS; ELECTROLYTE INTERPHASE; POLYMER ELECTROLYTE; STRESS EVOLUTION; METAL BATTERIES; THIN-FILMS; ANODE; PERFORMANCE; TEMPERATURE;
D O I
10.1016/j.etran.2023.100310
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
Solid -state batteries (SSBs) have been widely considered as the most promising technology for next-generation energy storage systems. Among the anode candidates for SSBs, silicon (Si)-based materials have received extensive attention due to their advantages of low potential, high specific capacity and abundant resource. However, Si-based anodes undergo significant volume changes during repeated charging and discharging process, leading to irreversible degradation of electrode/ electrolyte interface and rapid capacity fading of SSBs. Therefore, the development of Si-based SSBs is still limited to laboratory level. In this review, we systematically summarized the research advances of Si-based SSBs from the aspects of the design principle of electrodes structure, the selection of solid -state electrolytes and the corresponding interfacial optimization strategies, failure mechanisms of electrochemical performance and advanced interfacial characterization technologies. It is hoped that this review can provide help for the in-depth understanding of the fundamental scientific issues in Si-based SSBs, further promoting the practical applications of Si-based SSBs in the near future.
引用
收藏
页数:21
相关论文
共 144 条
[11]   Long-Cycling Sulfide-Based All-Solid-State Batteries Enabled by Electrochemo-Mechanically Stable Electrodes [J].
Cao, Daxian ;
Sun, Xiao ;
Li, Yejing ;
Anderson, Alexander ;
Lu, Wenquan ;
Zhu, Hongli .
ADVANCED MATERIALS, 2022, 34 (24)
[12]   High performance silicon-based anodes in solid-state lithium batteries [J].
Cervera, Rinlee B. ;
Suzuki, Naoki ;
Ohnishi, Tsuyoshi ;
Osada, Minoru ;
Mitsuishi, Kazutaka ;
Kambara, Takayoshi ;
Takada, Kazunori .
ENERGY & ENVIRONMENTAL SCIENCE, 2014, 7 (02) :662-666
[13]   Regulation of Interphase Layer by Flexible Quasi-Solid Block Polymer Electrolyte to Achieve Highly Stable Lithium Metal Batteries [J].
Chai, Simin ;
Chang, Zhi ;
Zhong, Yue ;
He, Qiong ;
Wang, Yijiang ;
Wan, Yuanlang ;
Feng, MingYang ;
Hu, Yingzhu ;
Li, WeiHang ;
Wei, Weifeng ;
Pan, Anqiang .
ADVANCED FUNCTIONAL MATERIALS, 2023, 33 (27)
[14]   Constructing a Superlithiophilic 3D Burr-Microsphere Interface on Garnet for High-Rate and Ultra-Stable Solid-State Li Batteries [J].
Chen, Butian ;
Zhang, Jicheng ;
Zhang, Tianran ;
Wang, Ruoyu ;
Zheng, Jian ;
Zhai, Yanwu ;
Liu, Xiangfeng .
ADVANCED SCIENCE, 2023, 10 (11)
[15]   Sustainable Interfaces between Si Anodes and Garnet Electrolytes for Room-Temperature Solid-State Batteries [J].
Chen, Cheng ;
Li, Quan ;
Li, Yiqiu ;
Cui, Zhonghui ;
Guo, Xiangxin ;
Li, Hong .
ACS APPLIED MATERIALS & INTERFACES, 2018, 10 (02) :2185-2190
[16]   Origin of Degradation in Si-Based All-Solid-State Li-Ion Microbatteries [J].
Chen, Chunguang ;
Oudenhoven, Jos F. M. ;
Danilov, Dmitri L. ;
Vezhlev, Egor ;
Gao, Lu ;
Li, Na ;
Mulder, Fokko M. ;
Eichel, Ruediger-A. ;
Notten, Peter H. L. .
ADVANCED ENERGY MATERIALS, 2018, 8 (30)
[17]   Sulfide solid electrolytes for all-solid-state lithium batteries: Structure, conductivity, stability and application [J].
Chen, Shaojie ;
Xie, Dongjiu ;
Liu, Gaozhan ;
Mwizerwa, Jean Pierre ;
Zhang, Qiang ;
Zhao, Yanran ;
Xu, Xiaoxiong ;
Yao, Xiayin .
ENERGY STORAGE MATERIALS, 2018, 14 :58-74
[18]   Deciphering How Anion Clusters Govern Lithium Conduction in Glassy Thiophosphate Electrolytes through Machine Learning [J].
Chen, Zhimin ;
Du, Tao ;
Christensen, Rasmus ;
Bauchy, Mathieu ;
Smedskjaer, Morten M. .
ACS ENERGY LETTERS, 2023, 8 (04) :1969-1975
[19]   A free-standing lithium phosphorus oxynitride thin film electrolyte promotes uniformly dense lithium metal deposition with no external pressure [J].
Cheng, Diyi ;
Wynn, Thomas ;
Lu, Bingyu ;
Marple, Maxwell ;
Han, Bing ;
Shimizu, Ryosuke ;
Sreenarayanan, Bhagath ;
Bickel, Jeffery ;
Hosemann, Peter ;
Yang, Yangyuchen ;
Nguyen, Han ;
Li, Weikang ;
Zhu, Guomin ;
Zhang, Minghao ;
Meng, Ying Shirley .
NATURE NANOTECHNOLOGY, 2023, 18 (12) :1448-1455
[20]   Unveiling the Stable Nature of the Solid Electrolyte Interphase between Lithium Metal and LiPON via Cryogenic Electron Microscopy [J].
Cheng, Diyi ;
Wynn, Thomas A. ;
Wang, Xuefeng ;
Wang, Shen ;
Zhang, Minghao ;
Shimizu, Ryosuke ;
Bai, Shuang ;
Nguyen, Han ;
Fang, Chengcheng ;
Kim, Min-cheol ;
Li, Weikang ;
Lu, Bingyu ;
Kim, Suk Jun ;
Meng, Ying Shirley .
JOULE, 2020, 4 (11) :2484-2500