Fractional diffusion for Fokker-Planck equation with heavy tail equilibrium: An a la Koch spectral method in any dimension

被引:0
作者
Dechicha, Dahmane [1 ]
Puel, Marjolaine [2 ]
机构
[1] Univ Cote dAzur, Lab JA Dieudonne, UMR 7351, Parc Valrose, F-06108 Nice 02, France
[2] CY Cergy Paris Univ, UMR CNRS 8088, Lab Rech AGM, 2 Ave Adolphe Chauvin, F-95302 Cergy Pontoise 95302, France
关键词
Kinetic Fokker-Planck equation; Fokker-Planck operator; heavy-tailed equilibrium; anomalous diffusion; fractional diffusion; spectral theory; eigen-solutions; LIMIT; RATES;
D O I
10.3233/ASY-231870
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we extend the spectral method developed (Dechicha and Puel (2023)) to any dimension d >= 1, in order to construct an eigen-solution for the Fokker-Planck operator with heavy tail equilibria, of the form (1 + vertical bar v vertical bar(2))(-beta/2), in the range beta is an element of] d, d + 4[. The method developed in dimension 1 was inspired by the work of H. Koch on nonlinear KdV equation (Nonlinearity 28 (2015) 545). The strategy in this paper is the same as in dimension 1 but the tools are different, since dimension 1 was based on ODE methods. As a direct consequence of our construction, we obtain the fractional diffusion limit for the kinetic Fokker-Planck equation, for the correct density rho := integral(Rd) f dv, with a fractional Laplacian kappa(-Delta)(beta-d+/6) and a positive diffusion coefficient kappa.
引用
收藏
页码:79 / 132
页数:54
相关论文
共 26 条
[1]  
Bakry D., 2008, A simple proof of the Poincare inequality for a large class of probability measures
[2]   DIFFUSION-APPROXIMATION AND COMPUTATION OF THE CRITICAL SIZE [J].
BARDOS, C ;
SANTOS, R ;
SENTIS, R .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1984, 284 (02) :617-649
[3]  
Bensoussan, 1979, PUBL RES I MATH SCI, V15, P53, DOI [DOI 10.2977/PRIMS/1195188427.MR533346, DOI 10.2977/PRIMS/1195188427]
[4]   Sharp rates of decay of solutions to the nonlinear fast diffusion equation via functional inequalities [J].
Bonforte, M. ;
Dolbeault, J. ;
Grillo, G. ;
Vazquez, J. L. .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2010, 107 (38) :16459-16464
[5]  
BOUIN E., 2022, Probab. Math. Phys., V3, P491, DOI [10.2140/pmp.2022.3.491, DOI 10.2140/PMP.2022.3.491]
[6]   Fractional Hypocoercivity [J].
Bouin, Emeric ;
Dolbeault, Jean ;
Lafleche, Laurent .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2022, 390 (03) :1369-1411
[7]   DIFFUSION LIMIT FOR KINETIC FOKKER-PLANCK EQUATION WITH HEAVY TAILS EQUILIBRIA: THE CRITICAL CASE [J].
Cattiaux, Patrick ;
Nasreddine, Elissar ;
Puel, Marjolaine .
KINETIC AND RELATED MODELS, 2019, 12 (04) :727-748
[8]   Functional inequalities for heavy tailed distributions and application to isoperimetry [J].
Cattiaux, Patrick ;
Gozlan, Nathael ;
Guillin, Arnaud ;
Roberto, Cyril .
ELECTRONIC JOURNAL OF PROBABILITY, 2010, 15 :346-385
[9]  
Dechicha D, 2023, Arxiv, DOI arXiv:2303.07159
[10]  
Degond P., 1987, Transport Theory and Statistical Physics, V16, P589, DOI 10.1080/00411458708204307