Hölder continuity of weak solutions to evolution equations with distributed order fractional time derivative

被引:3
作者
Kubica, Adam [1 ]
Ryszewska, Katarzyna [1 ]
Zacher, Rico [2 ]
机构
[1] Warsaw Univ Technol, Dept Math & Informat Sci, Pl Politechn 1, PL-00661 Warsaw, Poland
[2] Univ Ulm, Inst Appl Anal, D-89069 Ulm, Germany
关键词
35R09; 45K05; 35B65; DIFFERENTIAL-EQUATIONS; INTEGRODIFFERENTIAL EQUATIONS; HARNACKS INEQUALITY; VOLTERRA-EQUATIONS; DIFFUSION EQUATION;
D O I
10.1007/s00208-024-02806-y
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We study the regularity of weak solutions to evolution equations with distributed order fractional time derivative. We prove a weak Harnack inequality for nonnegative weak supersolutions and Holder continuity of weak solutions to this problem. Our results substantially generalise analogous known results for the problem with single order fractional time derivative.
引用
收藏
页码:2513 / 2592
页数:80
相关论文
共 34 条
[1]   A Parabolic Problem with a Fractional Time Derivative [J].
Allen, Mark ;
Caffarelli, Luis ;
Vasseur, Alexis .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2016, 221 (02) :603-630
[2]  
[Anonymous], 2002, London Mathematical Society Lecture Note Series
[3]   The inverse Laplace transform of some analytic functions with an application to the eternal solutions of the Boltzmann equation [J].
Bobylev, AV ;
Cercignani, C .
APPLIED MATHEMATICS LETTERS, 2002, 15 (07) :807-813
[4]   HARNACKS INEQUALITY FOR ELLIPTIC DIFFERENTIAL EQUATIONS ON MINIMAL SURFACES [J].
BOMBIERI, E ;
GIUSTI, E .
INVENTIONES MATHEMATICAE, 1972, 15 (01) :24-&
[5]  
CLEMENT P, 1984, LECT NOTES MATH, V1076, P32
[6]   ASYMPTOTIC-BEHAVIOR OF SOLUTIONS OF NON-LINEAR VOLTERRA-EQUATIONS WITH COMPLETELY POSITIVE KERNELS [J].
CLEMENT, P ;
NOHEL, JA .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 1981, 12 (04) :514-535
[7]   COMPLETELY POSITIVE MEASURES AND FELLER SEMIGROUPS [J].
CLEMENT, P ;
PRUSS, J .
MATHEMATISCHE ANNALEN, 1990, 287 (01) :73-105
[8]  
Clement Ph., 2004, PRIORI ESTIMATES WEA
[9]  
DiBenedetto E, 2012, SPRINGER MONOGR MATH, P1, DOI 10.1007/978-1-4614-1584-8
[10]   On the parabolic Harnack inequality for non-local diffusion equations [J].
Dier, Dominik ;
Kemppainen, Jukka ;
Siljander, Juhana ;
Zacher, Rico .
MATHEMATISCHE ZEITSCHRIFT, 2020, 295 (3-4) :1751-1769