Preparation of green high-performance biomass-derived hard carbon materials from bamboo powder waste

被引:10
|
作者
Yin, Tianqi [1 ]
Zhang, Zhengli [2 ]
Xu, Lizhi [2 ]
Li, Chuang [1 ,2 ]
Han, Dongdong [1 ]
机构
[1] Univ Sci & Technol China, Inst Adv Technol, Hefei 230031, Peoples R China
[2] Univ Sci & Technol China, Dept Appl Chem, CAS Key Lab Urban Pollutant Convers, Hefei 230041, Peoples R China
基金
中国国家自然科学基金;
关键词
biomass; pyrolysis; biochar; hard carbon; sodium-ion battery; SODIUM-ION BATTERIES; ANODE; CATHODE; LITHIUM; INSERTION; CAPACITY; METALS;
D O I
10.1002/open.202300178
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Efficient energy storage systems are crucial for the optimal utilization of renewable energy. Sodium-ion batteries (SIBs) are considered potential substitutes for next-generation low-cost energy storage systems due to the low cost and abundance of sodium resources. However, the industrialization of SIBs faces a great challenge in terms of the anode. Hard carbon could be a promising anode material due to its high capacity and low cost which originates from biomass. This study used pre-treatment and template carbonization methods to extract a hard carbon material from a large amount of discarded biomass in bamboo powder waste. This material has a good initial Coulombic efficiency of 78.6 % and good cycling stability when applied to sodium ion batteries.Typically, the optimal hard carbon material is used as the anode to prepare sodium ion battery prototypes to demonstrate their potential applications. The anode exhibited excellent sodium storage performance with a reversible capacity of 303 mAh & sdot; g-1 at 1 C rate and good cycling performance, retaining 92.0 % of its capacity after 100 cycles. These results demonstrate that BPPHC is a promising candidate for anode material in sodium-ion batteries. This work suggests that bamboo powder could be a low-cost anode material for SIBs. This study used pre-treatment and template carbonization methods to extract a hard carbon material from a large amount of discarded biomass in bamboo powder waste. Template activation method produces rich and uniform pore structures that are beneficial for sodium storage.image
引用
收藏
页数:9
相关论文
共 50 条
  • [1] Close pore engineering for biomass-derived hard carbon toward high-performance sodium-ion batteries
    Ren, Chaojie
    He, Jie
    Xu, Hanyu
    Wang, Ji
    Li, Ke
    Hu, Kuncai
    Zhao, Liang
    Wang, Haibo
    Yang, Ruizhi
    ELECTROCHIMICA ACTA, 2025, 523
  • [2] Biomass-derived carbon materials from wood butterfly for high-performance supercapacitor
    Zou, Yu
    Zhou, Yueyun
    MATERIALS EXPRESS, 2021, 11 (03) : 397 - 402
  • [3] Biomass-Derived Hard Carbon Materials for High-Performance Sodium-Ion Battery
    Chen, Yixing
    Cui, Jiaming
    Wang, Sheng
    Xu, Wentao
    Guo, Ruoqi
    COATINGS, 2025, 15 (02):
  • [4] A Review on the Upgradation of Biomass-derived Hard Carbon Materials
    Wang, Tengrui
    Li, Ruyan
    Liu, Qian
    Liu, Weichi
    RECENT PATENTS ON NANOTECHNOLOGY, 2025, 19 (02) : 257 - 269
  • [5] Green Production of Biomass-Derived Carbon Materials for High-Performance Lithium-Sulfur Batteries
    Ma, Chao
    Zhang, Mengmeng
    Ding, Yi
    Xue, Yan
    Wang, Hongju
    Li, Pengfei
    Wu, Dapeng
    NANOMATERIALS, 2023, 13 (11)
  • [6] Bamboo waste derived hard carbon as high performance anode for sodium-ion batteries
    Gao, Tengteng
    Zhou, Youhang
    Jiang, Yizhi
    Xue, Zhao
    Ding, Yanhuai
    DIAMOND AND RELATED MATERIALS, 2024, 150
  • [7] From food to hard carbon: Citric acid enhanced biomass-derived anodes for high-performance sodium storage
    Zhong, Hao
    Huang, Qianhong
    Zou, Mingyan
    Li, Fengtian
    Liu, Yiqing
    Luo, Yuhong
    Ma, Guozheng
    Wu, Yongbo
    Lin, Xiaoming
    Hu, Lei
    CHEMICAL ENGINEERING JOURNAL, 2025, 508
  • [8] Hard carbon derived from waste tea biomass as high-performance anode material for sodium-ion batteries
    Pei, Linyuan
    Cao, Hailiang
    Yang, Liangtao
    Liu, Peizhi
    Zhao, Min
    Xu, Bingshe
    Guo, Junjie
    IONICS, 2020, 26 (11) : 5535 - 5542
  • [9] Advantageous Tubular Structure of Biomass-Derived Carbon for High-Performance Sodium Storage
    Liu, Heli
    Liu, Huan
    Di, Shuanlong
    Zhai, Boyin
    Li, Li
    Wang, Shulan
    ACS APPLIED ENERGY MATERIALS, 2021, 4 (05): : 4955 - 4965
  • [10] Biomass-derived hard carbon microtubes with tunable apertures for high-performance sodium-ion batteries
    Song, Pin
    Wei, Shiqiang
    Di, Jun
    Du, Jun
    Xu, Wenjie
    Liu, Daobin
    Wang, Changda
    Qiao, Sicong
    Cao, Yuyang
    Cui, Qilong
    Zhang, Pengjun
    Ma, Liaobo
    Cui, Jiewu
    Wang, Yan
    Xiong, Yujie
    NANO RESEARCH, 2023, 16 (04) : 4874 - 4879