Combined scaling for zero-shot transfer learning

被引:22
|
作者
Pham, Hieu [1 ]
Dai, Zihang [1 ]
Ghiasi, Golnaz [1 ]
Kawaguchi, Kenji [2 ]
Liu, Hanxiao [1 ]
Yu, Adams Wei [1 ]
Yu, Jiahui [1 ]
Chen, Yi-Ting [1 ]
Luong, Minh-Thang [1 ]
Wu, Yonghui [1 ]
Tan, Mingxing [1 ]
V. Le, Quoc [1 ]
机构
[1] Brain Team, Google Res, Mountain View, CA USA
[2] Harvard Univ, Cambridge, MA 02138 USA
关键词
Deep learning; Computer vision; Deep neural networks; Zero-shot transfer; INFORMED NEURAL-NETWORKS; MODELS;
D O I
10.1016/j.neucom.2023.126658
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Recent developments in multimodal training methodologies, including CLIP and ALIGN, obviate the necessity for individual data labeling. These approaches utilize pairs of data and corresponding textual information found online as a form of weak supervision signal. However, models employing this kind of weak supervision are not as competitive as their supervised and semi-supervised counterparts when sufficient labeled data is accessible. This performance gap constrains the applicability of weekly supervised models. In this paper, we narrow the gap by proposing a combined scaling method, named BASIC, that achieves 85.7% top-1 accuracy on the ImageNet ILSVRC-2012 validation set without learning from any labeled ImageNet example. This accuracy surpasses best-published similar models, CLIP and ALIGN, by 9.3%. Our BASIC model also shows significant improvements in robustness benchmarks. For instance, on 5 test sets with natural distribution shifts such as ImageNet-{A,R,V2,Sketch} and ObjectNet, our model achieves 84.3% top-1 average accuracy, only a small drop from its original ImageNet accuracy. To achieve these results, we first develop a theoretical framework which shows that larger contrastive batch sizes lead to smaller generalization gaps for image-text models such as CLIP and ALIGN. Based on this theoretical result, we scale up the contrastive learning framework of CLIP and ALIGN in three dimensions (data size, model size, and batch size) by proposing a new method using gradient checkpointing and model parallelism. As a result, our dataset has 6.6B noisy image-text pairs, which is 4x larger than ALIGN, and 16x larger than CLIP. Our largest model has 3B weights, which is 3.75x larger in parameters and 8x larger in FLOPs than ALIGN and CLIP. Finally, our batch size is 65536 which is 2x more than CLIP and 4x more than ALIGN.
引用
收藏
页数:23
相关论文
共 50 条
  • [11] Zero-Shot Task Transfer
    Pal, Arghya
    Balasubramanian, Vineeth N.
    2019 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2019), 2019, : 2184 - 2193
  • [12] Ordinal Zero-Shot Learning
    Huo, Zengwei
    Geng, Xin
    PROCEEDINGS OF THE TWENTY-SIXTH INTERNATIONAL JOINT CONFERENCE ON ARTIFICIAL INTELLIGENCE, 2017, : 1916 - 1922
  • [13] Zero-Shot Kernel Learning
    Zhang, Hongguang
    Koniusz, Piotr
    2018 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2018, : 7670 - 7679
  • [14] Zero-shot causal learning
    Nilforoshan, Hamed
    Moor, Michael
    Roohani, Yusuf
    Chen, Yining
    Surina, Anja
    Yasunaga, Michihiro
    Oblak, Sara
    Leskovec, Jure
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 36 (NEURIPS 2023), 2023,
  • [15] Zero-shot Metric Learning
    Xu, Xinyi
    Cao, Huanhuan
    Yang, Yanhua
    Yang, Erkun
    Deng, Cheng
    PROCEEDINGS OF THE TWENTY-EIGHTH INTERNATIONAL JOINT CONFERENCE ON ARTIFICIAL INTELLIGENCE, 2019, : 3996 - 4002
  • [16] Active Zero-Shot Learning
    Xie, Sihong
    Wang, Shaoxiong
    Yu, Philip S.
    CIKM'16: PROCEEDINGS OF THE 2016 ACM CONFERENCE ON INFORMATION AND KNOWLEDGE MANAGEMENT, 2016, : 1889 - 1892
  • [17] Spherical Zero-Shot Learning
    Shen, Jiayi
    Xiao, Zehao
    Zhen, Xiantong
    Zhang, Lei
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, 2022, 32 (02) : 634 - 645
  • [18] Rebalanced Zero-Shot Learning
    Ye, Zihan
    Yang, Guanyu
    Jin, Xiaobo
    Liu, Youfa
    Huang, Kaizhu
    IEEE TRANSACTIONS ON IMAGE PROCESSING, 2023, 32 : 4185 - 4198
  • [19] Incremental Zero-Shot Learning
    Wei, Kun
    Deng, Cheng
    Yang, Xu
    Tao, Dacheng
    IEEE TRANSACTIONS ON CYBERNETICS, 2022, 52 (12) : 13788 - 13799
  • [20] Lifelong Zero-Shot Learning
    Wei, Kun
    Deng, Cheng
    Yang, Xu
    PROCEEDINGS OF THE TWENTY-NINTH INTERNATIONAL JOINT CONFERENCE ON ARTIFICIAL INTELLIGENCE, 2020, : 551 - 557