Combined scaling for zero-shot transfer learning

被引:23
|
作者
Pham, Hieu [1 ]
Dai, Zihang [1 ]
Ghiasi, Golnaz [1 ]
Kawaguchi, Kenji [2 ]
Liu, Hanxiao [1 ]
Yu, Adams Wei [1 ]
Yu, Jiahui [1 ]
Chen, Yi-Ting [1 ]
Luong, Minh-Thang [1 ]
Wu, Yonghui [1 ]
Tan, Mingxing [1 ]
V. Le, Quoc [1 ]
机构
[1] Brain Team, Google Res, Mountain View, CA USA
[2] Harvard Univ, Cambridge, MA 02138 USA
关键词
Deep learning; Computer vision; Deep neural networks; Zero-shot transfer; INFORMED NEURAL-NETWORKS; MODELS;
D O I
10.1016/j.neucom.2023.126658
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Recent developments in multimodal training methodologies, including CLIP and ALIGN, obviate the necessity for individual data labeling. These approaches utilize pairs of data and corresponding textual information found online as a form of weak supervision signal. However, models employing this kind of weak supervision are not as competitive as their supervised and semi-supervised counterparts when sufficient labeled data is accessible. This performance gap constrains the applicability of weekly supervised models. In this paper, we narrow the gap by proposing a combined scaling method, named BASIC, that achieves 85.7% top-1 accuracy on the ImageNet ILSVRC-2012 validation set without learning from any labeled ImageNet example. This accuracy surpasses best-published similar models, CLIP and ALIGN, by 9.3%. Our BASIC model also shows significant improvements in robustness benchmarks. For instance, on 5 test sets with natural distribution shifts such as ImageNet-{A,R,V2,Sketch} and ObjectNet, our model achieves 84.3% top-1 average accuracy, only a small drop from its original ImageNet accuracy. To achieve these results, we first develop a theoretical framework which shows that larger contrastive batch sizes lead to smaller generalization gaps for image-text models such as CLIP and ALIGN. Based on this theoretical result, we scale up the contrastive learning framework of CLIP and ALIGN in three dimensions (data size, model size, and batch size) by proposing a new method using gradient checkpointing and model parallelism. As a result, our dataset has 6.6B noisy image-text pairs, which is 4x larger than ALIGN, and 16x larger than CLIP. Our largest model has 3B weights, which is 3.75x larger in parameters and 8x larger in FLOPs than ALIGN and CLIP. Finally, our batch size is 65536 which is 2x more than CLIP and 4x more than ALIGN.
引用
收藏
页数:23
相关论文
共 50 条
  • [1] Bangla Sign alphabet recognition with zero-shot and transfer learning
    Nihal, Ragib Amin
    Rahman, Sejuti
    Broti, Nawara Mahmood
    Deowan, Shamim Ahmed
    PATTERN RECOGNITION LETTERS, 2021, 150 : 84 - 93
  • [2] Zero-Shot Transfer Learning Based on Visual and Textual Resemblance
    Yang, Gang
    Xu, Jieping
    NEURAL INFORMATION PROCESSING (ICONIP 2019), PT III, 2019, 11955 : 353 - 362
  • [3] Zero-shot Learning With Fuzzy Attribute
    Liu, Chongwen
    Shang, Zhaowei
    Tang, Yuan Yan
    2017 3RD IEEE INTERNATIONAL CONFERENCE ON CYBERNETICS (CYBCONF), 2017, : 277 - 282
  • [4] Variational Disentangle Zero-Shot Learning
    Su, Jie
    Wan, Jinhao
    Li, Taotao
    Li, Xiong
    Ye, Yuheng
    MATHEMATICS, 2023, 11 (16)
  • [5] Zero-Shot Transfer Learning Framework for Plant Leaf Disease Classification
    Satya Rajendra Singh, R.
    Sanodiya, Rakesh Kumar
    IEEE ACCESS, 2023, 11 : 143861 - 143880
  • [6] Zero-Shot Transfer Learning of a Throwing Task via Domain Randomization
    Park, Sungyong
    Kim, Jigang
    Kim, H. Jin
    2020 20TH INTERNATIONAL CONFERENCE ON CONTROL, AUTOMATION AND SYSTEMS (ICCAS), 2020, : 1026 - 1030
  • [7] Semantics-Guided Intra-Category Knowledge Transfer for Generalized Zero-Shot Learning
    Fu-En Yang
    Yuan-Hao Lee
    Chia-Ching Lin
    Yu-Chiang Frank Wang
    International Journal of Computer Vision, 2023, 131 (6) : 1331 - 1345
  • [8] Semantics-Guided Intra-Category Knowledge Transfer for Generalized Zero-Shot Learning
    Yang, Fu-En
    Lee, Yuan-Hao
    Lin, Chia-Ching
    Wang, Yu-Chiang Frank
    INTERNATIONAL JOURNAL OF COMPUTER VISION, 2023, 131 (06) : 1331 - 1345
  • [9] Fabric Recognition Using Zero-Shot Learning
    Wang, Feng
    Liu, Huaping
    Sun, Fuchun
    Pan, Haihong
    TSINGHUA SCIENCE AND TECHNOLOGY, 2019, 24 (06) : 645 - 653
  • [10] Fabric Recognition Using Zero-Shot Learning
    Feng Wang
    Huaping Liu
    Fuchun Sun
    Haihong Pan
    Tsinghua Science and Technology, 2019, 24 (06) : 645 - 653