A Fault Diagnosis Method for Rolling Bearing Based on Deep Adversarial Transfer Learning With Transferability Measurement

被引:2
作者
Mi, Junpeng [1 ]
Chu, Min [1 ]
Hou, Yaochun [2 ]
Jin, Jianxiang [1 ]
Huang, Wenjun [1 ]
Xiang, Tian [3 ]
Wu, Dazhuan [2 ]
机构
[1] Zhejiang Univ, Sch Control Sci & Engn, Hangzhou 310027, Peoples R China
[2] Zhejiang Univ, Sch Energy Engn, Hangzhou 310027, Peoples R China
[3] Zhejiang Lab, Intelligent Robot Res Ctr, Hangzhou 311121, Peoples R China
关键词
Feature extraction; Training; Transfer learning; Rolling bearings; Entropy; Data models; Adaptation models; Deep adversarial transfer learning; empirical wavelet transform (EWT); entropy regularized Wasserstein distance (ERWD); rolling bearing; transferability measurement; ADAPTATION NETWORK;
D O I
10.1109/JSEN.2023.3330139
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
The data distribution of rolling bearings varies under different operating conditions, and it is difficult to obtain a large amount of labeled data. Most existing work focuses solely on domain alignment and neglects the assessment of cross-domain transferability. In this article, a fault diagnosis method for rolling bearing based on deep adversarial transfer learning with transferability measurement (DATLTM) is proposed. First, the source domain and target domain data under different working conditions of rolling bearings are divided by empirical wavelet transform (EWT) and input the source domain and its subband data together with the target domain data into the deep neural network to generate a pretrained model, where the network is composed of a feature extraction module constructed by 1-D convolutional neural network (CNN) and a domain adaptive module that uses entropy regularized Wasserstein distance (ERWD) to measure the distribution difference. Subsequently, transferability measurement is conducted based on the logarithm of maximum evidence (LogME) evaluation index and the existing pretrained models. Target domain sample reconstruction is performed, and the source domain data are reintroduced into the network for training. The effectiveness and advantages of the proposed method were demonstrated through variable operating conditions tasks on Case Western Reserve University (CWRU) and self-conducted bearing fault datasets. Among them, on the six transfer tasks of self-conducted bearing fault datasets, compared with other transfer learning diagnosis methods, the proposed method has the highest cross-domain diagnosis accuracy in five tasks.
引用
收藏
页码:984 / 994
页数:11
相关论文
共 50 条
  • [31] Transfer learning method for rolling bearing fault diagnosis under different working conditions based on CycleGAN
    Zhao, Jiantong
    Huang, Wentao
    MEASUREMENT SCIENCE AND TECHNOLOGY, 2022, 33 (02)
  • [32] A rolling bearing fault diagnosis method based on cloud-edge collaboration federated transfer learning
    Liang, Xintao
    Sun, Yulin
    Kang, Shouqiang
    Zhao, Zhihui
    Wang, Yujing
    Wang, Qingyan
    MEASUREMENT SCIENCE AND TECHNOLOGY, 2025, 36 (04)
  • [33] Fault Diagnosis Method of a Rolling Bearing Under Variable Working Conditions Based on Feature Transfer Learning
    Kang S.
    Hu M.
    Wang Y.
    Xie J.
    Mikulovich V.I.
    Zhongguo Dianji Gongcheng Xuebao/Proceedings of the Chinese Society of Electrical Engineering, 2019, 39 (03): : 764 - 772
  • [34] Rolling Bearing Fault Diagnosis Using Deep Transfer Learning Based on Joint Generalized Sliced Wasserstein Distance
    Lei, Na
    Cui, Jipeng
    Han, Jicheng
    Chen, Xian
    Tang, Youfu
    IEEE ACCESS, 2024, 12 : 41452 - 41463
  • [35] Deep domain adaptation with adversarial idea and coral alignment for transfer fault diagnosis of rolling bearing
    Li, Ranran
    Li, Shunming
    Xu, Kun
    Lu, Jiantao
    Teng, Guangrong
    Du, Jun
    MEASUREMENT SCIENCE AND TECHNOLOGY, 2021, 32 (09)
  • [36] Fault diagnosis for rolling bearing based on parameter transfer Bayesian network
    Jiang, Zhao
    Zhou, Jian
    Ma, Yizhong
    QUALITY AND RELIABILITY ENGINEERING INTERNATIONAL, 2022, 38 (08) : 4291 - 4308
  • [37] Invariant Feature Purification Method for Domain Generalization of Rolling Bearing Fault Diagnosis
    Xie, Yining
    Yang, Guojun
    Chen, Hongzhan
    Zhao, Zhichao
    Leng, Xin
    IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, 2025, 74
  • [38] Fault diagnosis method of rolling bearing based on deep belief network
    Zhiwu Shang
    Xiangxiang Liao
    Rui Geng
    Maosheng Gao
    Xia Liu
    Journal of Mechanical Science and Technology, 2018, 32 : 5139 - 5145
  • [39] A novel transfer learning fault diagnosis method for rolling bearing based on feature correlation matching
    Wang, Bo
    Wang, Baoqiang
    Ning, Yi
    MEASUREMENT SCIENCE AND TECHNOLOGY, 2022, 33 (12)
  • [40] A Deep Adaptive Learning Method for Rolling Bearing Fault Diagnosis Using Immunity
    Tian, Yuling
    Liu, Xiangyu
    TSINGHUA SCIENCE AND TECHNOLOGY, 2019, 24 (06) : 750 - 762