A Fault Diagnosis Method for Rolling Bearing Based on Deep Adversarial Transfer Learning With Transferability Measurement

被引:2
作者
Mi, Junpeng [1 ]
Chu, Min [1 ]
Hou, Yaochun [2 ]
Jin, Jianxiang [1 ]
Huang, Wenjun [1 ]
Xiang, Tian [3 ]
Wu, Dazhuan [2 ]
机构
[1] Zhejiang Univ, Sch Control Sci & Engn, Hangzhou 310027, Peoples R China
[2] Zhejiang Univ, Sch Energy Engn, Hangzhou 310027, Peoples R China
[3] Zhejiang Lab, Intelligent Robot Res Ctr, Hangzhou 311121, Peoples R China
关键词
Feature extraction; Training; Transfer learning; Rolling bearings; Entropy; Data models; Adaptation models; Deep adversarial transfer learning; empirical wavelet transform (EWT); entropy regularized Wasserstein distance (ERWD); rolling bearing; transferability measurement; ADAPTATION NETWORK;
D O I
10.1109/JSEN.2023.3330139
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
The data distribution of rolling bearings varies under different operating conditions, and it is difficult to obtain a large amount of labeled data. Most existing work focuses solely on domain alignment and neglects the assessment of cross-domain transferability. In this article, a fault diagnosis method for rolling bearing based on deep adversarial transfer learning with transferability measurement (DATLTM) is proposed. First, the source domain and target domain data under different working conditions of rolling bearings are divided by empirical wavelet transform (EWT) and input the source domain and its subband data together with the target domain data into the deep neural network to generate a pretrained model, where the network is composed of a feature extraction module constructed by 1-D convolutional neural network (CNN) and a domain adaptive module that uses entropy regularized Wasserstein distance (ERWD) to measure the distribution difference. Subsequently, transferability measurement is conducted based on the logarithm of maximum evidence (LogME) evaluation index and the existing pretrained models. Target domain sample reconstruction is performed, and the source domain data are reintroduced into the network for training. The effectiveness and advantages of the proposed method were demonstrated through variable operating conditions tasks on Case Western Reserve University (CWRU) and self-conducted bearing fault datasets. Among them, on the six transfer tasks of self-conducted bearing fault datasets, compared with other transfer learning diagnosis methods, the proposed method has the highest cross-domain diagnosis accuracy in five tasks.
引用
收藏
页码:984 / 994
页数:11
相关论文
共 50 条
  • [21] A deep feature enhanced reinforcement learning method for rolling bearing fault diagnosis
    Wang, Ruixin
    Jiang, Hongkai
    Zhu, Ke
    Wang, Yanfeng
    Liu, Chaoqiang
    ADVANCED ENGINEERING INFORMATICS, 2022, 54
  • [22] A Deep Transfer Learning Fault Diagnosis Method Based on WGAN and Minimum Singular Value for Non-Homologous Bearing
    He, Jun
    Ouyang, Ming
    Chen, Zhiwen
    Chen, Danfeng
    Liu, Shiya
    IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, 2022, 71
  • [23] FAULT DIAGNOSIS METHOD OF WIND TURBINES ROLLING BEARING BASED ON IMPROVED RESNET AND TRANSFER LEARNING
    Lei C.
    Xue L.
    Jiao M.
    Zhang H.
    Shi J.
    Taiyangneng Xuebao/Acta Energiae Solaris Sinica, 2023, 44 (06): : 436 - 444
  • [24] Deep Residual Network Combined with Transfer Learning Based Fault Diagnosis for Rolling Bearing
    Zhou, Jianmin
    Yang, Xiaotong
    Li, Jiahui
    APPLIED SCIENCES-BASEL, 2022, 12 (15):
  • [25] Deep Adversarial Domain Adaptation Model for Bearing Fault Diagnosis
    Liu, Zhao-Hua
    Lu, Bi-Liang
    Wei, Hua-Liang
    Chen, Lei
    Li, Xiao-Hua
    Raetsch, Matthias
    IEEE TRANSACTIONS ON SYSTEMS MAN CYBERNETICS-SYSTEMS, 2021, 51 (07): : 4217 - 4226
  • [26] Cross-Conditions Fault Diagnosis of Rolling Bearing Based on Transitional Domain Adversarial Network
    Jiang, Yonghua
    He, Yian
    Shi, Zhuoqi
    Jiang, Hongkui
    Dong, Zhilin
    Sun, Jianfeng
    Tang, Chao
    Jiao, Weidong
    IEEE SENSORS JOURNAL, 2025, 25 (01) : 1978 - 1993
  • [27] Deep transfer learning for rolling bearing fault diagnosis under variable operating conditions
    Che, Changchang
    Wang, Huawei
    Fu, Qiang
    Ni, Xiaomei
    ADVANCES IN MECHANICAL ENGINEERING, 2019, 11 (12)
  • [28] Deep Transfer Learning for Bearing Fault Diagnosis: A Systematic Review Since 2016
    Chen, Xiaohan
    Yang, Rui
    Xue, Yihao
    Huang, Mengjie
    Ferrero, Roberto
    Wang, Zidong
    IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, 2023, 72
  • [29] Fault diagnosis method of automobile rolling bearing based on transfer learning and improved DenseNet
    Lu, Xinxin
    Xiao, Yang
    EKSPLOATACJA I NIEZAWODNOSC-MAINTENANCE AND RELIABILITY, 2025, 27 (02):
  • [30] Multi-Scale Rolling Bearing Fault Diagnosis Method Based on Transfer Learning
    Yin, Zhenyu
    Zhang, Feiqing
    Xu, Guangyuan
    Han, Guangjie
    Bi, Yuanguo
    APPLIED SCIENCES-BASEL, 2024, 14 (03):