Impact Resistance of Ultra-High-Performance Concrete Composite Structures

被引:7
作者
Ning, Huijun [1 ,2 ]
Ren, Huiqi [1 ]
Wang, Wei [3 ]
Nie, Xiaodong [2 ]
机构
[1] Acad Mil Sci AMS, Peoples Liberat Army PLA, Inst Def Engn, Luoyang 471023, Peoples R China
[2] Henan Univ Sci & Technol, Sch Civil Engn & Architecture, Luoyang 471023, Peoples R China
[3] Ningbo Univ, Key Lab Impact & Safety Engn, Minist Educ, Ningbo 315211, Peoples R China
关键词
UHPC; impact resistance; composite structure; reinforcement ratio; PENETRATION; TARGETS; UHPFRC; BEAMS;
D O I
10.3390/ma16237456
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Ultra-high-performance concrete (UHPC) is a cement-based material with excellent impact resistance. Compared with traditional concrete, it possesses ultra-high strength, ultra-high toughness, and ultra-high durability, making it an ideal material for designing structures with impact resistance. The research on the impact resistance performance of UHPC and its composite structures is of great significance for the structural design of protective engineering projects. However, currently, there is still insufficient research on the impact resistance performance of UHPC composite structures. To study the impact resistance performance, experiments were conducted on UHPC targets using high-speed projectiles. The results were compared with impact tests on granite targets. The results indicated that when subjected to projectile impact, the UHPC targets exhibited smaller surface craters compared with the granite targets, while the penetration depth was lower in the granite targets. Afterwards, the process of a projectile impacting the UHPC composite structure was numerically simulated using ANSYS 16.0/LS-DYNA finite element software. The numerical simulation results of penetration depth and crater diameter were in good agreement with the experimental results, which indicates the rationality of the numerical model. Based on this, further analysis was carried out on the influence of impact velocity, impact angle, and reinforcement ratio on the penetration depth of the composite structure. The results show that the larger the incident angle or the smaller the velocity of the projectile is, the easier it is to deflect the projectile. There is a linear relationship between penetration depth and reinforcement ratio; as the reinforcement ratio increases, the penetration depth decreases significantly. This research is of great significance in improving the safety and reliability of key projects and also contributes to the application and development of ultra-high-performance materials in the engineering field.
引用
收藏
页数:17
相关论文
共 36 条
  • [2] Performance of reinforced concrete composite wall systems under projectile impact
    Abbas, Husain
    Al-Dabaan, Mansuer
    Siddiqui, Nadeem
    Almusallam, Tarek
    Al-Salloum, Yousef
    [J]. JOURNAL OF MATERIALS RESEARCH AND TECHNOLOGY-JMR&T, 2023, 23 : 3062 - 3090
  • [4] Response of hybrid-fiber reinforced concrete slabs to hard projectile impact
    Almusallam, Tarek H.
    Siddiqui, Nadeem A.
    Iqbal, Rizwan A.
    Abbas, Husain
    [J]. INTERNATIONAL JOURNAL OF IMPACT ENGINEERING, 2013, 58 : 17 - 30
  • [5] [Anonymous], 2015, GBT 31387 2015
  • [6] Failure characteristics of UHPFRC panels subjected to projectile impact
    Beppu, M.
    Kataoka, S.
    Ichino, H.
    Musha, H.
    [J]. COMPOSITES PART B-ENGINEERING, 2020, 182
  • [7] Resistance of hybrid layered composite panels composed of fiber-reinforced cementitious composites against high-velocity projectile impact
    Choi, Jeong-Il
    Park, Se-Eon
    Huy Hoang Nguyen
    Lee, Yun
    Lee, Bang Yeon
    [J]. COMPOSITE STRUCTURES, 2022, 281
  • [8] Darssni R., 2022, J. Build. Eng, V57, P104922
  • [9] State-of-the-art review on ultra high performance concrete - Ballistic and blast perspective
    Das, Nabodyuti
    Nanthagopalan, Prakash
    [J]. CEMENT & CONCRETE COMPOSITES, 2022, 127
  • [10] AN EMPIRICAL-EQUATION FOR PENETRATION DEPTH OF OGIVE-NOSE PROJECTILES INTO CONCRETE TARGETS
    FORRESTAL, MJ
    ALTMAN, BS
    CARGILE, JD
    HANCHAK, SJ
    [J]. INTERNATIONAL JOURNAL OF IMPACT ENGINEERING, 1994, 15 (04) : 395 - 405