A Novel Temporal Convolutional Network Based on Position Encoding for Remaining Useful Life Prediction

被引:0
作者
Yang, Yinghua [1 ]
Fu, Hongxiang [1 ]
Liu, Xiaozhi [1 ]
机构
[1] Northeastern Univ, Coll Informat Sci & Engn, Shenyang, Peoples R China
来源
2023 35TH CHINESE CONTROL AND DECISION CONFERENCE, CCDC | 2023年
基金
中国国家自然科学基金;
关键词
Deep learning; Remaining useful life; Position encoding; Temporal convolutional network; REGRESSION;
D O I
10.1109/CCDC58219.2023.10327490
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
The technology of prognostics and health management (PHM) has developed rapidly. As one of the important tasks in PHM field, remaining useful life (RUL) prediction can effectively predict the remaining service time before machine failure, so that enterprises can make decisions in advance and avoid safety accidents. In this article, a new data-driven method is proposed, which adopts a position encoding scheme to extract more time sequence information from the original data, and then uses a novel temporal convolutional network (TCN) and attention mechanism to predict RUL. In order to evaluate the effect of the model, C-MAPSS dataset is used for testing the performance, and the results are compared with other methods, which shows that the proposed method is more effective.
引用
收藏
页码:900 / 905
页数:6
相关论文
共 50 条
  • [1] Remaining useful life prediction for mechanical equipment based on Temporal convolutional network
    Ji Wenqiang
    Cheng Jian
    Chen Yi
    PROCEEDINGS OF 2019 14TH IEEE INTERNATIONAL CONFERENCE ON ELECTRONIC MEASUREMENT & INSTRUMENTS (ICEMI), 2019, : 1192 - 1199
  • [2] Remaining Useful Life Prediction Based on Adaptive SHRINKAGE Processing and Temporal Convolutional Network
    Wang, Haitao
    Yang, Jie
    Shi, Lichen
    Wang, Ruihua
    SENSORS, 2022, 22 (23)
  • [3] Position Encoding Based Convolutional Neural Networks for Machine Remaining Useful Life Prediction
    Jin, Ruibing
    Wu, Min
    Wu, Keyu
    Gao, Kaizhou
    Chen, Zhenghua
    Li, Xiaoli
    IEEE-CAA JOURNAL OF AUTOMATICA SINICA, 2022, 9 (08) : 1427 - 1439
  • [4] Temporal convolutional attention network for remaining useful life estimation
    Liu L.
    Pei X.
    Lei X.
    Jisuanji Jicheng Zhizao Xitong/Computer Integrated Manufacturing Systems, CIMS, 2022, 28 (08): : 2375 - 2386
  • [5] Temporal Convolutional Network with Attention Mechanism for Bearing Remaining Useful Life Prediction
    Wang, Shuai
    Zhang, Chao
    Lv, Da
    Zhao, Wentao
    PROCEEDINGS OF TEPEN 2022, 2023, 129 : 391 - 400
  • [6] Distributed Attention-Based Temporal Convolutional Network for Remaining Useful Life Prediction
    Song, Yan
    Gao, Shengyao
    Li, Yibin
    Jia, Lei
    Li, Qiqiang
    Pang, Fuzhen
    IEEE INTERNET OF THINGS JOURNAL, 2021, 8 (12): : 9594 - 9602
  • [7] Temporal Convolutional Network Based Regression Approach for Estimation of Remaining Useful Life
    Li, Rongze
    Chu, Zhengtian
    Jin, Wangkai
    Wang, Yaohua
    Hu, Xiao
    2021 IEEE INTERNATIONAL CONFERENCE ON PROGNOSTICS AND HEALTH MANAGEMENT (ICPHM), 2021,
  • [8] State of Health Monitoring and Remaining Useful Life Prediction of Lithium-Ion Batteries Based on Temporal Convolutional Network
    Zhou, Danhua
    Li, Zhanying
    Zhu, Jiali
    Zhang, Haichuan
    Hou, Lin
    IEEE ACCESS, 2020, 8 : 53307 - 53320
  • [9] Multipath Temporal Convolutional Network for Remaining Useful Life Estimation
    Melendez-Vazquez, Ivan
    Doelling, Rolando
    Bringmann, Oliver
    2020 IEEE INTERNATIONAL CONFERENCE ON BIG DATA (BIG DATA), 2020, : 4137 - 4146
  • [10] A global attention based gated temporal convolutional network for machine remaining useful life prediction
    Xu, Xinyao
    Zhou, Xiaolei
    Fan, Qiang
    Yan, Hao
    Wang, Fangxiao
    RELIABILITY ENGINEERING & SYSTEM SAFETY, 2025, 260