THE FRACTIONAL CHROMATIC NUMBER OF K\bfDelta-FREE GRAPHS

被引:0
作者
Hu, Xiaolan [1 ,2 ]
Peng, Xing [3 ]
机构
[1] Cent China Normal Univ, Sch Math & Stat, Wuhan 430079, Peoples R China
[2] Cent China Normal Univ, Hubei Key Lab Math Sci, Wuhan 430079, Peoples R China
[3] Anhui Univ, Ctr Pure Math, Sch Math Sci, Hefei 230601, Peoples R China
基金
中国国家自然科学基金;
关键词
coloring; fractional coloring; fractional chromatic number; TRIANGLE-FREE GRAPHS; INDEPENDENCE RATIO; MAXIMUM DEGREE; DELTA;
D O I
10.1137/21M1440037
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
For a simple graph G, let \chif (G) be the fractional chromatic number of G. In this paper, we aim to establish upper bounds on \chif (G) for those graphs G with restrictions on the clique number. Namely, we prove that for \Delta \geq 4, if G has maximum degree at most \Delta and is K =-free, then \chif (G) \leq \Delta -81 unless G = C82 or G = C5 \boxtimes K2. This improves the result in [A. King, L. Lu, and X. Peng, SIAM J. Discrete Math., 26 (2012), pp. 452--471] for \Delta \geq 4 and the result in [K. Edwards and A. D. King, SIAM J. Discrete Math., 27 (2013), pp. 1184--1208] for \Delta \in {6, 7, 8}.
引用
收藏
页码:2486 / 2507
页数:22
相关论文
共 21 条
[1]  
[Anonymous], 1978, P 9 SE C COMBINATORI
[2]   UPPER BOUND OF A GRAPHS CHROMATIC NUMBER, DEPENDING ON GRAPHS DEGREE AND DENSITY [J].
BORODIN, OV ;
KOSTOCHKA, AV .
JOURNAL OF COMBINATORIAL THEORY SERIES B, 1977, 23 (2-3) :247-250
[3]   Subcubic triangle-free graphs have fractional chromatic number at most 14/5 [J].
Dvorak, Z. ;
Sereni, J. -S. ;
Volec, J. .
JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 2014, 89 :641-662
[4]  
DVORv Z., 2022, arXiv
[5]   BOUNDING THE FRACTIONAL CHROMATIC NUMBER OF KΔ-FREE GRAPHS [J].
Edwards, Katherine ;
King, Andrew D. .
SIAM JOURNAL ON DISCRETE MATHEMATICS, 2013, 27 (02) :1184-1208
[6]   The fractional chromatic number of triangle-free subcubic graphs [J].
Ferguson, David G. ;
Kaiser, Tomas ;
Kral, Daniel .
EUROPEAN JOURNAL OF COMBINATORICS, 2014, 35 :184-220
[7]  
Gallai T., 1963, Publ. Math. Inst. Hung. Acad. Sci., V8, P265
[8]   Edge density and independence ratio in triangle-free graphs with maximum degree three [J].
Griggs, J ;
Murphy, O .
DISCRETE MATHEMATICS, 1996, 152 (1-3) :157-170
[9]   THE FRACTIONAL CHROMATIC NUMBER OF GRAPHS OF MAXIMUM DEGREE AT MOST THREE [J].
Hatami, Hamed ;
Zhu, Xuding .
SIAM JOURNAL ON DISCRETE MATHEMATICS, 2009, 23 (04) :1762-1775
[10]   A new proof of the independence ratio of triangle-free cubic graphs [J].
Heckman, CC ;
Thomas, R .
DISCRETE MATHEMATICS, 2001, 233 (1-3) :233-237