Zirconia-free NaSICON solid electrolyte materials for sodium all-solid-state batteries

被引:7
|
作者
Tieu, Aaron Jue Kang [1 ,2 ]
Mahayoni, Eunike [3 ,4 ]
Li, Yuheng [1 ,2 ]
Deng, Zeyu [1 ,2 ]
Fauth, Francois [5 ]
Chotard, Jean-Noel [3 ,4 ]
Seznec, Vincent [3 ,4 ]
Adams, Stefan [1 ,2 ]
Masquelier, Christian [3 ,4 ,6 ]
Canepa, Pieremanuele [1 ,2 ,7 ,8 ]
机构
[1] Natl Univ Singapore, Coll Design & Engn, Dept Mat Sci, Singapore 117575, Singapore
[2] Natl Univ Singapore, Coll Design & Engn, Dept Engn, Singapore 117575, Singapore
[3] Univ Picardie Jules Verne, CNRS, UMR 7314, Lab React & Chim Solides LRCS, F-80039 Amiens, France
[4] CNRS, RS2E Reseau Francais Stockage Electrochim Energie, FR 3459, F-80039 Amiens 1, France
[5] CELLS ALBA Synchrotron, E-08290 Cerdanyola Del Valles, Barcelona, Spain
[6] ALISTORE ERI European Res Inst, CNRS, FR 3104, Amiens, France
[7] Dept Elect & Comp Engn, Houston, TX 77204 USA
[8] Univ Houston, Texas Ctr Superconduct, Houston, TX 77204 USA
基金
新加坡国家研究基金会;
关键词
SUPERIONIC CONDUCTOR; ION; EXCESS; PHASE; NA; NA3ZR2SI2PO12; TEMPERATURE; TRANSPORT; STABILITY;
D O I
10.1039/d3ta04665f
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The growing demand for energy storage systems has sparked a race to build inexpensive and safer rechargeable batteries. All-solid-state sodium (Na)-ion batteries are a competitive alternative to their lithium (Li) analogs due to the lower cost of Na resources. The Na SuperIonic CONductors Na1+xZr2SixP3-xO12 0 <= x <= 3 (NZSP) are widely studied as solid electrolytes. However, synthesized NZSPs always contain monoclinic ZrO2 as the main impurity phase, which may lead to a lower Na-ion ionic conductivity within the solid-electrolyte layer. Here, we synthesize zirconia-free NZSP by engineering the quantity of zirconium (Zr) precursors. Synchrotron X-ray diffraction, Raman spectroscopy, and density functional theory simulations reveal zirconia-free NZSP. Impedance spectroscopy measurement of zirconia-free NZSP reveals an impressive total ionic conductivity of similar to 3.49 mS cm-1 with a bulk conductivity of similar to 10.05 mS cm-1 at room temperature, making it an excellent Na-ion conductor for all-solid-state batteries. Battery tests of symmetric cells confirm that zirconia-free NZSP electrolyte provides significantly improved perfomance. These results pave the way towards the synthesis optimization of impurity-free complex solid-electrolytes, which are important if solid-state batteries are to be commercialized. The growing demand for energy storage systems has sparked a race to build inexpensive and safer rechargeable all-solid-state batteries.
引用
收藏
页码:23233 / 23242
页数:10
相关论文
共 50 条
  • [21] Borohydride Ammoniate Solid Electrolyte Design for All-Solid-State Mg Batteries
    Pang, Yuepeng
    Nie, Zhengfang
    Xu, Fen
    Sun, Lixian
    Yang, Junhe
    Sun, Dalin
    Fang, Fang
    Zheng, Shiyou
    ENERGY & ENVIRONMENTAL MATERIALS, 2024, 7 (01)
  • [22] Revealing stable organic cathode/solid electrolyte interface to promote all-solid-state sodium batteries using organic cathodes
    Yang, Shuaishuai
    Shao, Changxiang
    Xiao, Xiong
    Fang, Debao
    Li, Na
    Zhao, Enyue
    Wang, Chengzhi
    Chen, Lai
    Li, Ning
    Li, Jingbo
    Su, Yuefeng
    Jin, Haibo
    ENERGY STORAGE MATERIALS, 2024, 73
  • [23] Electromechanical Failure of NASICON-Type Solid-State Electrolyte-Based All-Solid-State Li-Ion Batteries
    He, Linchun
    Oh, Jin An Sam
    Watarai, Kenta
    Morita, Masato
    Zhao, Yue
    Sun, Qiaomei
    Sakamoto, Tetsuo
    Lu, Li
    Adams, Stefan
    CHEMISTRY OF MATERIALS, 2021, 33 (17) : 6841 - 6852
  • [24] Solid electrolytes and interfaces in all-solid-state sodium batteries: Progress and perspective
    Hou, Wenru
    Guo, Xianwei
    Shen, Xuyang
    Amine, Khali
    Yu, Haijun
    Lu, Jun
    NANO ENERGY, 2018, 52 : 279 - 291
  • [25] Probing Solid Solid Interfacial Reactions in All-Solid-State Sodium-Ion Batteries with First-Principles Calculations
    Tang, Hanmei
    Deng, Zhi
    Lin, Zhuonan
    Wang, Zhenbin
    Chu, Iek-Heng
    Chen, Chi
    Zhu, Zhuoying
    Zheng, Chen
    Onets, Shyue Ping
    CHEMISTRY OF MATERIALS, 2018, 30 (01) : 163 - 173
  • [26] A dual-halogen electrolyte for protective-layer-free all-solid-state lithium batteries
    Tang, Wen
    Xia, Wei
    Hussain, Fiaz
    Zhu, Jinlong
    Han, Songbai
    Yin, Wen
    Yu, Pengcheng
    Lei, Jiuwei
    Butenko, Denys S.
    Wang, Liping
    Zhao, Yusheng
    JOURNAL OF POWER SOURCES, 2023, 568
  • [27] Free-standing polymer electrolyte for all-solid-state lithium batteries operated at room temperature
    Hsu, Shih-Ting
    Tran, Binh T.
    Subramani, Ramesh
    Nguyen, Hanh T. T.
    Rajamani, Arunkumar
    Lee, Ming-Yu
    Hou, Sheng-Shu
    Lee, Yuh-Lang
    Teng, Hsisheng
    JOURNAL OF POWER SOURCES, 2020, 449
  • [28] A Review of Modification Methods of Solid Electrolytes for All-Solid-State Sodium-Ion Batteries
    Dai, Hanqing
    Chen, Yuanyuan
    Xu, Wenqian
    Hu, Zhe
    Gu, Jing
    Wei, Xian
    Xie, Fengxian
    Zhang, Wanlu
    Wei, Wei
    Guo, Ruiqian
    Zhang, Guoqi
    ENERGY TECHNOLOGY, 2021, 9 (01)
  • [29] Performance Evaluation of Composite Electrolyte with GQD for All-Solid-State Lithium Batteries
    Hwang, Sung Won
    Hong, Dae-Ki
    CMC-COMPUTERS MATERIALS & CONTINUA, 2023, 74 (01): : 55 - 66
  • [30] Sulfide-based composite solid electrolyte films for all-solid-state batteries
    Li, Shenghao
    Yang, Zhihua
    Wang, Shu-Bo
    Ye, Mingqiang
    He, Hongcai
    Zhang, Xin
    Nan, Ce-Wen
    Wang, Shuo
    COMMUNICATIONS MATERIALS, 2024, 5 (01)