Digital-Twin-Assisted Resource Allocation for Network Slicing in Industry 4.0 and Beyond Using Distributed Deep Reinforcement Learning

被引:15
|
作者
Tang, Lun [1 ,2 ]
Du, Yucong [1 ,2 ]
Liu, Qinghai [1 ,2 ]
Li, Jinyu [1 ,2 ]
Li, Shirui [1 ,2 ]
Chen, Qianbin [1 ,2 ]
机构
[1] Chongqing Univ Posts & Telecommun, Sch Commun & Informat Engn, Chongqing 400065, Peoples R China
[2] Chongqing Univ Posts & Telecommun, Chongqing Key Lab Mobile Commun, Chongqing 400065, Peoples R China
基金
中国国家自然科学基金;
关键词
Digital twin network (DTN); Industry 4.0 and Beyond; Industry Internet of Things; prioritized experience replay (PER); resource allocation; service equilibrium; TRANSPORTATION;
D O I
10.1109/JIOT.2023.3274163
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Personalization is one of the primary emerging trends in Industry 4.0 and Beyond. Highly personalized services will present a significant challenge to the existing algorithms for network slicing (NS) and resource allocation, leading to issues, such as nonequilibratory resource allocation, in which some services are sacrificed for the maximum total reward of the algorithm, excessive cost, and slow algorithm convergence. A digital twin network (DTN) is offered as a novel solution to the challenges listed above. By integrating the DTN and IIoT NS, we propose a DTN-assisted industry Internet of Things NS (DTN-IIoT NS) architecture for personalized IIoT services in Industry 4.0 and Beyond. The DTN-IIoT NS architecture consists of three layers, three modules, and two closed loops. On the basis of the aforementioned architecture, we focus on the resource allocation process in DTN-IIoT NS, model the DT-assisted resource allocation for highly personalized IIoT services, propose the service equilibrium rate, and formulate the optimization problem aiming at maximizing the equilibrium rate weighted net profit of network providers. Then, we propose a dual-channel weighted (DCW) Critic network for service equilibrium in DTN-IIoT NS resource allocation and the matching Improved prioritized experience replay (PER) to enhance convergent speed. In addition, we present a distributed DT-assisted DCW-PER multiagent deep deterministic policy gradient (PER-DCW MADDPG) algorithm for the resource allocation process in DTN-IIoT NS. Simulation results indicate that the PER-DCW MADDPG algorithm can produce a better service equilibrium and accelerate the convergence speed of the algorithm.
引用
收藏
页码:16989 / 17006
页数:18
相关论文
共 50 条
  • [41] Distributed Deep Reinforcement Learning Based Mode Selection and Resource Allocation for VR Transmission in Edge Networks
    Luo, Jie
    Liu, Bei
    Gao, Hui
    Su, Xin
    COMMUNICATIONS AND NETWORKING (CHINACOM 2021), 2022, : 153 - 167
  • [42] A Hierarchical Framework of Cloud Resource Allocation and Power Management Using Deep Reinforcement Learning
    Liu, Ning
    Li, Zhe
    Xu, Jielong
    Xu, Zhiyuan
    Lin, Sheng
    Qiu, Qinru
    Tang, Jian
    Wang, Yanzhi
    2017 IEEE 37TH INTERNATIONAL CONFERENCE ON DISTRIBUTED COMPUTING SYSTEMS (ICDCS 2017), 2017, : 372 - 382
  • [43] Radio Resource Allocation for 5G Networks Using Deep Reinforcement Learning
    Munaye, Yirga Yayeh
    Lin, Hsin-Piao
    Lin, Ding-Bing
    Juang, Rong-Terng
    Tarekegn, Getaneh Berie
    Jeng, Shiann-Shiun
    2021 30TH WIRELESS AND OPTICAL COMMUNICATIONS CONFERENCE (WOCC 2021), 2021, : 66 - 69
  • [44] Joint Offloading and Resource Allocation Using Deep Reinforcement Learning in Mobile Edge Computing
    Zhang, Xinjie
    Zhang, Xinglin
    Yang, Wentao
    IEEE TRANSACTIONS ON NETWORK SCIENCE AND ENGINEERING, 2022, 9 (05): : 3454 - 3466
  • [45] A Graph Convolutional Network-Based Deep Reinforcement Learning Approach for Resource Allocation in a Cognitive Radio Network
    Zhao, Di
    Qin, Hao
    Song, Bin
    Han, Beichen
    Du, Xiaojiang
    Guizani, Mohsen
    SENSORS, 2020, 20 (18) : 1 - 23
  • [46] Deep Reinforcement Learning for Computation and Communication Resource Allocation in Multiaccess MEC Assisted Railway IoT Networks
    Xu, Jianpeng
    Ai, Bo
    Chen, Liangyu
    Cui, Yaping
    Wang, Ning
    IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, 2022, 23 (12) : 23797 - 23808
  • [47] Resource Allocation and Collaborative Offloading in Multi-UAV-Assisted IoV With Federated Deep Reinforcement Learning
    Chen, Zheyi
    Huang, Zhiqin
    Zhang, Junjie
    Cheng, Hongju
    Li, Jie
    IEEE INTERNET OF THINGS JOURNAL, 2025, 12 (05): : 4629 - 4640
  • [48] Resource Allocation Based on Digital Twin-Enabled Federated Learning Framework in Heterogeneous Cellular Network
    He, Yejun
    Yang, Mengna
    He, Zhou
    Guizani, Mohsen
    IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, 2023, 72 (01) : 1149 - 1158
  • [49] Deep Reinforcement Learning Based Edge Computing Network Aided Resource Allocation Algorithm for Smart Grid
    Chi, Yingying
    Zhang, Yi
    Liu, Yong
    Zhu, Hailong
    Zheng, Zhe
    Liu, Rui
    Zhang, Peiying
    IEEE ACCESS, 2023, 11 : 6541 - 6550
  • [50] Deep Reinforcement Learning-Based Resource Allocation for Integrated Sensing, Communication, and Computation in Vehicular Network
    Yang, Liu
    Wei, Yifei
    Feng, Zhiyong
    Zhang, Qixun
    Han, Zhu
    IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, 2024, 23 (12) : 18608 - 18622