Development of a Resilience Parameter for 3D-Printable Shape Memory Polymer Blends

被引:2
|
作者
Cavender-Word, Truman J. [1 ,2 ]
Roberson, David A. [1 ,2 ]
机构
[1] Univ Texas El Paso, Polymer Extrus Lab, El Paso, TX 79968 USA
[2] Univ Texas El Paso, Dept Met Mat & Biomed Engn, El Paso, TX 79968 USA
基金
美国国家科学基金会;
关键词
shape memory polymers; additive manufacturing; fused filament fabrication; injection molding; self-healing polymers; PLASTIC DEBRIS; ABS; ADDITIVES; OCEAN;
D O I
10.3390/ma16175906
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The goal of this paper was to establish a metric, which we refer to as the resilience parameter, to evaluate the ability of a material to retain tensile strength after damage recovery for shape memory polymer (SMP) systems. In this work, three SMP blends created for the additive manufacturing process of fused filament fabrication (FFF) were characterized. The three polymer systems examined in this study were 50/50 by weight binary blends of the following constituents: (1) polylactic acid (PLA) and maleated styrene-ethylene-butylene-styrene (SEBS-g-MA); (2) acrylonitrile butadiene styrene (ABS) and SEBS-g-MA); and (3) PLA and thermoplastic polyurethane (TPU). The blends were melt compounded and specimens were fabricated by way of FFF and injection molding (IM). The effect of shape memory recovery from varying amounts of initial tensile deformation on the mechanical properties of each blend, in both additively manufactured and injection molded forms, was characterized in terms of the change in tensile strength vs. the amount of deformation the specimens recovered from. The findings of this research indicated a sensitivity to manufacturing method for the PLA/TPU blend, which showed an increase in strength with increasing deformation recovery for the injection molded samples, which indicates this blend had excellent resilience. The ABS/SEBS blend showed no change in strength with the amount of deformation recovery, indicating that this blend had good resilience. The PLA/SEBS showed a decrease in strength with an increasing amount of initial deformation, indicating that this blend had poor resilience. The premise behind the development of this parameter is to promote and aid the notion that increased use of shape memory and self-healing polymers could be a strategy for mitigating plastic waste in the environment.
引用
收藏
页数:21
相关论文
共 50 条
  • [31] Reprogrammable, Sustainable, and 3D-Printable Cellulose Hydroplastic
    Koh, J. Justin
    Koh, Xue Qi
    Chee, Jing Yee
    Chakraborty, Souvik
    Tee, Si Yin
    Zhang, Danwei
    Lai, Szu Cheng
    Yeo, Jayven Chee Chuan
    Soh, Jia Wen Jaslin
    Li, Peiyu
    Tan, Swee Ching
    Thitsartarn, Warintorn
    He, Chaobin
    ADVANCED SCIENCE, 2024, 11 (29)
  • [32] Interactive Design of 3D-Printable Robotic Creatures
    Megaro, Vittorio
    Thomaszewski, Bernhard
    Nitri, Maurizio
    Hilliges, Otmar
    Gross, Markus
    Coros, Stelian
    ACM TRANSACTIONS ON GRAPHICS, 2015, 34 (06):
  • [33] Development of 3D-Printable Albumin-Alginate Foam for Wound Dressing Applications
    Madadian, Elias
    Naseri, Emad
    Legault, Ryan
    Ahmadi, Ali
    3D PRINTING AND ADDITIVE MANUFACTURING, 2024, 11 (03) : e1175 - e1185
  • [34] A 3D-Printable Polymer-Metal Soft-Magnetic Functional CompositeDevelopment and Characterization
    Khatri, Bilal
    Lappe, Karl
    Noetzel, Dorit
    Pursche, Kilian
    Hanemann, Thomas
    MATERIALS, 2018, 11 (02)
  • [35] 3D-printable plant protein-enriched scaffolds for cultivated meat development
    Ianovici, Iris
    Zagury, Yedidya
    Redenski, Idan
    Lavon, Neta
    Levenberg, Shulamit
    BIOMATERIALS, 2022, 284
  • [36] Microencapsulated phase change material in 3D-printable mortars
    Rahemipoor, Sahand
    Bayat, Mohamad
    Hasany, Masoud
    Mehrali, Mohammad
    Almdal, Kristoffer
    Ranjbar, Navid
    Mehrali, Mehdi
    ENERGY CONVERSION AND MANAGEMENT, 2024, 321
  • [37] 3D-Printable Cellular Composites for the Production of Recombinant Proteins
    Sim, Seunghyun
    Hui, Yue
    Tirrell, David A.
    BIOMACROMOLECULES, 2022, 23 (11) : 4687 - 4695
  • [38] Tunable scaffolds from novel, 3D-printable biomaterials
    Guvendiren, Murat
    Dube, Koustubh
    Molde, Joseph
    Kohn, Joachim
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2016, 251
  • [39] Toward an open-source 3D-printable laboratory
    McNair, Mason C.
    Cocioba, Sebastian C.
    Pietrzyk, Peter
    Rife, Trevor W.
    APPLICATIONS IN PLANT SCIENCES, 2024, 12 (01):
  • [40] 3D-Printable Bioactivated Nanocellulose-Alginate Hydrogels
    Leppiniemi, Jenni
    Lahtinen, Panu
    Paajanen, Antti
    Mahlberg, Riitta
    Metsa-Kortelainen, Sini
    Pinornaa, Tatu
    Pajari, Heikki
    Vikholm-Lundin, Inger
    Pursula, Pekka
    Hytonen, Vesa P.
    ACS APPLIED MATERIALS & INTERFACES, 2017, 9 (26) : 21959 - 21970