Effect of compressibility on ablative Rayleigh-Taylor instability

被引:0
|
作者
Banerjee, Rahul [1 ]
机构
[1] St Pauls Cathedral Mission Coll, 33-1 Raja Rammohan Roy Sarani, Kolkata 700009, India
关键词
Bubble; Vorticity; Nonlinear growth; Compression; Decompression; Adiabatic index; Static pressure; 52.57Fg; 52.57Bc; 52.35Tc; GROWTH;
D O I
10.1007/s12648-023-02913-7
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
In this study, a nonlinear theoretical model has been proposed to describe the effect of compressibility on two-dimensional ablative Rayleigh-Taylor instability. The model is based on the Layzer's potential flow model with the vorticity generation inside the bubble. The analytic expression of curvature and asymptotic velocity of the tip of the bubble are obtained, and the growth of the bubble tip is described by a second-order nonlinear differential equation. It is observed that growth and asymptotic velocity are affected by the compression or decompression of both the fluids, together with the unperturbed static pressure at the interface of two fluids and adiabatic indices of both fluids. The obtained results are compared with the earlier linear and nonlinear results.
引用
收藏
页码:1761 / 1766
页数:6
相关论文
共 50 条
  • [21] Marangoni effect on Rayleigh-Taylor instability in viscous stratified fluid layers
    Jaiswal, Shatrughan Prasad
    Gavara, Madhusudhana
    INTERNATIONAL COMMUNICATIONS IN HEAT AND MASS TRANSFER, 2023, 141
  • [22] Effect of long-wavelength perturbations in nonlinear evolution of the ablative Rayleigh-Taylor mixing
    Zhao, K. G.
    Li, Z. Y.
    Wang, L. F.
    Xue, C.
    Wu, J. F.
    Xiao, Z. L.
    Ye, W. H.
    Ding, Y. K.
    Zhang, W. Y.
    He, X. T.
    PHYSICS OF PLASMAS, 2023, 30 (06)
  • [23] Discrete particle modeling of granular Rayleigh-Taylor instability
    Yu, Z. Y.
    Wu, C. L.
    Berrouk, A. S.
    Nandakumar, K.
    INTERNATIONAL JOURNAL OF MULTIPHASE FLOW, 2015, 77 : 260 - 270
  • [24] Viscous and elastic Rayleigh-Taylor instability at a dynamic interface in cylindrical geometry
    Wang, Y. W.
    Han, H.
    Sun, Y. B.
    Zeng, R. H.
    PHYSICS OF PLASMAS, 2025, 32 (02)
  • [25] Rayleigh-Taylor Instability With Varying Periods of Zero Acceleration
    Aslangil, Denis
    Farley, Zachary
    Lawrie, Andrew G. W.
    Banerjee, Arindam
    JOURNAL OF FLUIDS ENGINEERING-TRANSACTIONS OF THE ASME, 2020, 142 (12):
  • [26] Rayleigh-Taylor instability in elastic-plastic solids
    Piriz, A. R.
    Lopez Cela, J. J.
    Tahir, N. A.
    JOURNAL OF APPLIED PHYSICS, 2009, 105 (11)
  • [27] Inferring the Magnetic Field from the Rayleigh-Taylor Instability
    Grea, Benoit-Joseph
    Briard, Antoine
    ASTROPHYSICAL JOURNAL, 2023, 958 (02)
  • [28] Linear analysis of incompressible Rayleigh-Taylor instability in solids
    Piriz, A. R.
    Lopez Cela, J. J.
    Tahir, N. A.
    PHYSICAL REVIEW E, 2009, 80 (04):
  • [29] Strong stabilization of the Rayleigh-Taylor instability by material strength at megabar pressures
    Park, Hye-Sook
    Remington, B. A.
    Becker, R. C.
    Bernier, J. V.
    Cavallo, R. M.
    Lorenz, K. T.
    Pollaine, S. M.
    Prisbrey, S. T.
    Rudd, R. E.
    Barton, N. R.
    PHYSICS OF PLASMAS, 2010, 17 (05)
  • [30] From ICF to laboratory astrophysics: ablative and classical Rayleigh-Taylor instability experiments in turbulent-like regimes
    Casner, A.
    Mailliet, C.
    Rigon, G.
    Khan, S. F.
    Martinez, D.
    Albertazzi, B.
    Michel, T.
    Sano, T.
    Sakawa, Y.
    Tzeferacos, P.
    Lamb, D.
    Liberatore, S.
    Izumi, N.
    Kalantar, D.
    Di Nicola, P.
    Di Nicola, J. M.
    Le Bel, E.
    Igumenshchev, I.
    Tikhonchuk, V.
    Remington, B. A.
    Ballet, J.
    Falize, E.
    Masse, L.
    Smalyuk, V. A.
    Koenig, M.
    NUCLEAR FUSION, 2019, 59 (03)