HS-Pose: Hybrid Scope Feature Extraction for Category-level Object Pose Estimation

被引:22
作者
Zheng, Linfang [1 ,4 ]
Wang, Chen [1 ,2 ]
Sun, Yinghan [1 ]
Dasgupta, Esha [4 ]
Chen, Hua [1 ]
Leonardis, Ales [4 ]
Zhang, Wei [1 ,3 ]
Chang, Hyung Jin [4 ]
机构
[1] Southern Univ Sci & Technol, Dept Mech & Energy Engn, Shenzhen, Peoples R China
[2] Univ Hong Kong, Dept Comp Sci, Hong Kong, Peoples R China
[3] Peng Cheng Lab, Shenzhen, Peoples R China
[4] Univ Birmingham, Sch Comp Sci, Birmingham, England
来源
2023 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR) | 2023年
基金
中国国家自然科学基金;
关键词
D O I
10.1109/CVPR52729.2023.01646
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In this paper, we focus on the problem of category-level object pose estimation, which is challenging due to the large intra-category shape variation. 3D graph convolution (3D-GC) based methods have been widely used to extract local geometric features, but they have limitations for complex shaped objects and are sensitive to noise. Moreover, the scale and translation invariant properties of 3D-GC restrict the perception of an object's size and translation information. In this paper, we propose a simple network structure, the HS-layer, which extends 3D-GC to extract hybrid scope latent features from point cloud data for category-level object pose estimation tasks. The proposed HS-layer: 1) is able to perceive local-global geometric structure and global information, 2) is robust to noise, and 3) can encode size and translation information. Our experiments show that the simple replacement of the 3D-GC layer with the proposed HS-layer on the baseline method (GPV-Pose) achieves a significant improvement, with the performance increased by 14.5% on 5 degrees 2cm metric and 10.3% on IoU(75). Our method outperforms the state-of-the-art methods by a large margin (8.3% on 5 degrees 2cm, 6.9% on IoU(75)) on REAL275 dataset and runs in real-time (50 FPS)(1).
引用
收藏
页码:17163 / 17173
页数:11
相关论文
共 56 条
  • [1] Cai D., 2022, P IEEE C COMP VIS PA, P6803
  • [2] Chen Hansheng, 2022, EPRO PNP GEN END TO
  • [3] Chen K., 2021, P IEEE CVF INT C COM, P2773
  • [4] Chen Wang, 2020, 2020 IEEE International Conference on Robotics and Automation (ICRA), P10059, DOI 10.1109/ICRA40945.2020.9196679
  • [5] FS-Net: Fast Shape-based Network for Category-Level 6D Object Pose Estimation with Decoupled Rotation Mechanism
    Chen, Wei
    Jia, Xi
    Chang, Hyung Jin
    Duan, Jinming
    Shen, Linlin
    Leonardis, Ales
    [J]. 2021 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION, CVPR 2021, 2021, : 1581 - 1590
  • [6] Deng XK, 2019, ROBOTICS: SCIENCE AND SYSTEMS XV
  • [7] Di Yan, 2022, GPV POSE CATEGORY LE
  • [8] Haugaard Rasmus Laurvig, 2021, ABS211113489 CORR
  • [9] He KM, 2020, IEEE T PATTERN ANAL, V42, P386, DOI [10.1109/ICCV.2017.322, 10.1109/TPAMI.2018.2844175]
  • [10] Learning Filter Pruning Criteria for Deep Convolutional Neural Networks Acceleration
    He, Yang
    Ding, Yuhang
    Liu, Ping
    Zhu, Linchao
    Zhang, Hanwang
    Yang, Yi
    [J]. 2020 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2020, : 2006 - 2015