The influence of dielectric materials on CO2 conversion performance of pulsed micro-gap cylindrical dielectric barrier discharge reactor

被引:2
作者
Emeraldi, Primas [1 ,2 ]
Imai, Tsutomu [1 ]
Hayakawa, Yukio [1 ]
Kambara, Shinji [1 ]
机构
[1] Gifu Univ, Grad Sch Engn, Engn Div, Gifu 5011193, Japan
[2] Andalas Univ, Dept Elect Engn, Padang 25163, Indonesia
关键词
CO2; decomposition; conversion; dielectric barrier discharge; micro-gap reactor; non-thermal plasma; dielectric material; CARBON-DIOXIDE; PLASMA ACTIVATION; PARAMETERS;
D O I
10.35848/1347-4065/ace6aa
中图分类号
O59 [应用物理学];
学科分类号
摘要
Dielectric barrier discharge (DBD) is a non-thermal plasma technology that shows promise for CO2 conversion. However, its efficiency depends on plasma processing parameters, reactor design, and reactor material. This study focused on the effect of dielectric barrier material on the CO2 conversion performance of a pulsed micro-gap DBD reactor. The results of this study show that the DBD reactor with alumina dielectric produced better CO2 conversion performance than the quartz reactor, with a maximum CO2 conversion of 50.17% compared to 21.91% with the quartz reactor. The DBD reactor with alumina dielectric produced a greater current peak and a higher number of micro-discharges than the quartz reactor, which suggests that the number of micro-discharges plays a dominant role in the CO2 conversion performance of the DBD reactor. The use of high dielectric constant material with high surface roughness could enhance the CO2 conversion performance of pulsed micro-gap DBD reactors.
引用
收藏
页数:6
相关论文
共 40 条
[1]   Carbon Dioxide Splitting in a Dielectric Barrier Discharge Plasma: A Combined Experimental and Computational Study [J].
Aerts, Robby ;
Somers, Wesley ;
Bogaerts, Annemie .
CHEMSUSCHEM, 2015, 8 (04) :702-716
[2]   Plasma activation of CO2 in a dielectric barrier discharge: A chemical kinetic model from the microdischarge to the reactor scales [J].
Alliati, Martin ;
Mei, Danhua ;
Tu, Xin .
JOURNAL OF CO2 UTILIZATION, 2018, 27 :308-319
[3]   Plasma Technology for CO2 Conversion: A Personal Perspective on Prospects and Gaps [J].
Bogaerts, Annemie ;
Centi, Gabriele .
FRONTIERS IN ENERGY RESEARCH, 2020, 8 (08)
[4]   Opportunities and prospects in the chemical recycling of carbon dioxide to fuels [J].
Centi, Gabriele ;
Perathoner, Siglinda .
CATALYSIS TODAY, 2009, 148 (3-4) :191-205
[5]   Plasma assisted catalytic decomposition of CO2 [J].
Chen, Guoxing ;
Georgieva, Violeta ;
Godfroid, Thomas ;
Snyders, Rony ;
Delplancke-Ogletree, Marie-Paule .
APPLIED CATALYSIS B-ENVIRONMENTAL, 2016, 190 :115-124
[6]   The Fischer-Tropsch process: 1950-2000 [J].
Dry, ME .
CATALYSIS TODAY, 2002, 71 (3-4) :227-241
[7]  
Fridman A, 2008, PLASMA CHEMISTRY, P1, DOI 10.1017/CBO9780511546075
[8]   FTIR study of decomposition of carbon dioxide in dc corona discharges [J].
Horvath, G. ;
Skalny, J. D. ;
Mason, N. J. .
JOURNAL OF PHYSICS D-APPLIED PHYSICS, 2008, 41 (22)
[9]   Gliding arc plasma processing of CO2 conversion [J].
Indarto, Antonius ;
Yang, Dae Ryook ;
Choi, Jae-Wook ;
Lee, Hwaung ;
Song, Hyung Keun .
JOURNAL OF HAZARDOUS MATERIALS, 2007, 146 (1-2) :309-315
[10]   Dielectric-barrier discharges: Their history, discharge physics, and industrial applications [J].
Kogelschatz, U .
PLASMA CHEMISTRY AND PLASMA PROCESSING, 2003, 23 (01) :1-46