Review Genome-wide analysis of the apple PLD gene family and a functional characterization of MdPLD17 in drought tolerance

被引:7
|
作者
Fang, Sen [1 ]
Han, Xuanxuan [1 ]
Yuan, Penghao [1 ]
Song, Chunhui [1 ]
Song, Shangwei [1 ]
Jiao, Jian [1 ]
Wang, Miaomiao [1 ]
Zheng, Xianbo [1 ]
Bai, Tuanhui [1 ]
机构
[1] Henan Agr Univ, Coll Hort, Zhengzhou 450046, Peoples R China
基金
中国国家自然科学基金;
关键词
Apple; PLD genes; Drought stress; Expression analysis; Function identification; PHOSPHOLIPASE-D GENE; EXPRESSION ANALYSIS; OSMOTIC-STRESS; ACID; IDENTIFICATION;
D O I
10.1016/j.scienta.2023.112311
中图分类号
S6 [园艺];
学科分类号
0902 ;
摘要
Apple (Malus domestica Borkh.) is one of the most economically important fruit crops and is widely cultivated globally. However, apple trees are subject to drought stress, which affects their growth, quality, and yield. Phospholipase D (PLD) is the main phospholipid hydrolase in plants and plays a critical role in the regulation of growth and stress resistance. In this study, we identified 17 PLD genes in the apple genome and found them to be unevenly distributed across 11 apple chromosomes. We also determined their phylogenetic relationships and chromosomal locations. Gene structure analysis showed that the number of introns in MdPLD genes varied from 2 to 19, suggesting highly variable functions. We identified multiple stress-related cis-elements in promoter regions 2 kb upstream of MdPLD genes, and the expression of most MdPLD genes was altered under drought stress based on RNA-seq data. Comprehensive qRT-PCR analysis showed that MdPLD17 was highly up-regulated in response to drought stress. When MdPLD17 was overexpressed in apple callus, the transgenic lines showed higher drought tolerance than the wild types (WT). MdPLD17-OE callus exhibited higher fresh weight, a lower accumulation of MDA, H2O2, O-2(-), and less electrolyte leakage, suggesting that MdPLD17 plays a positive regulatory role in drought tolerance in apple. These findings provide evidence that MdPLD family members play an important role in drought tolerance and MdPLD17 can potentially be used as a favorable target gene in genetic applications for improving drought tolerance in apple.
引用
收藏
页数:9
相关论文
共 50 条
  • [41] Genome-wide identification and expression analysis of the ASMT gene family reveals their role in abiotic stress tolerance in apple
    Wang, Hongtao
    Song, Chunhui
    Fang, Sen
    Wang, Zhengyang
    Song, Shangwei
    Jiao, Jian
    Wang, Miaomiao
    Zheng, Xianbo
    Bai, Tuanhui
    SCIENTIA HORTICULTURAE, 2022, 293
  • [42] Genome-wide identification and functional characterization of cotton (Gossypium hirsutum) MAPKKK gene family in response to drought stress
    Jing-Bo Zhang
    Xin-Peng Wang
    Ya-Chao Wang
    Yi-Hao Chen
    Jing-Wen Luo
    Deng-Di Li
    Xue-Bao Li
    BMC Plant Biology, 20
  • [43] Genome-wide identification, characterization and evolutionary dynamic of invertase gene family in apple, and revealing its roles in cold tolerance
    Peng, Yunjing
    Zhu, Lingcheng
    Tian, Rui
    Wang, Liang
    Su, Jing
    Yuan, Yangyang
    Ma, Fengwang
    Li, Mingjun
    Ma, Baiquan
    INTERNATIONAL JOURNAL OF BIOLOGICAL MACROMOLECULES, 2023, 229 : 766 - 777
  • [44] Genome-wide analysis of BpDof genes and the tolerance to drought stress in birch (Betula platyphylla)
    Sun, Shilin
    Wang, Bo
    Jiang, Qi
    Li, Zhuoran
    Jia, Site
    Wang, Yucheng
    Guo, Huiyan
    PEERJ, 2021, 9
  • [45] Genome-Wide Identification, Characterization and Expression Analysis of Soybean CHYR Gene Family
    Jia, Bowei
    Wang, Yan
    Zhang, Dajian
    Li, Wanhong
    Cui, Hongli
    Jin, Jun
    Cai, Xiaoxi
    Shen, Yang
    Wu, Shengyang
    Guo, Yongxia
    Sun, Mingzhe
    Sun, Xiaoli
    INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2021, 22 (22)
  • [46] Genome-Wide Identification of the AP2/ERF Gene Family and Functional Analysis of GmAP2/ERF144 for Drought Tolerance in Soybean
    Wang, Haitang
    Ni, Danqing
    Shen, Jiacheng
    Deng, Sushuang
    Xuan, Huidong
    Wang, Congcong
    Xu, Jianyu
    Zhou, Li
    Guo, Na
    Zhao, Jinming
    Xing, Han
    FRONTIERS IN PLANT SCIENCE, 2022, 13
  • [47] Genome-wide analysis of KCS genes in tomato and functional characterization of SlKCS8 and SlKCS10 in drought tolerance
    Mo, Fulei
    Xue, Xiaopeng
    Wang, Jialu
    Wang, Jie
    Cheng, Mozhen
    Liu, Shusen
    Liu, Zhao
    Chen, Xiuling
    Wang, Aoxue
    PLANT PHYSIOLOGY AND BIOCHEMISTRY, 2025, 222
  • [48] Genome-wide identification and functional characterization of cotton (Gossypium hirsutum) MAPKKK gene family in response to drought stress
    Zhang, Jing-Bo
    Wang, Xin-Peng
    Wang, Ya-Chao
    Chen, Yi-Hao
    Luo, Jing-Wen
    Li, Deng-Di
    Li, Xue-Bao
    BMC PLANT BIOLOGY, 2020, 20 (01)
  • [49] Genome-wide characterization of Alfin-like (AL) genes in apple and functional identification of MdAL4 in response to drought stress
    Ping Wang
    Shixiong Lu
    Wenfang Li
    Zonghuan Ma
    Juan Mao
    Baihong Chen
    Plant Cell Reports, 2023, 42 : 395 - 408
  • [50] Genome-wide analysis of the GT8 gene family in apple and functional identification of MhGolS2 in saline-alkali tolerance
    Wang, Xiu
    Zhang, ZhongXing
    Li, JuanLi
    Wang, YanXiu
    PLANT MOLECULAR BIOLOGY, 2024, 114 (05)