Amifostine attenuates bleomycin-induced pulmonary fibrosis in mice through inhibition of the PI3K/Akt/mTOR signaling pathway

被引:5
|
作者
Yang, Wenting [1 ]
Pan, Lin [1 ]
Cheng, Yiju [2 ,3 ]
Wu, Xiao [1 ]
Huang, Songsong [4 ]
Du, Juan [1 ]
Zhu, Honglan [1 ]
Zhang, Menglin [1 ]
Zhang, Yuquan [1 ]
机构
[1] Guizhou Med Univ, Affiliated Hosp, Dept Resp & Crit Care Med, Guiyang 550004, Peoples R China
[2] First Peoples Hosp Guiyang, Dept Resp & Crit Care Med, Guiyang 550004, Peoples R China
[3] Guizhou Med Univ, Guiyang 550004, Peoples R China
[4] Guizhou Med Univ, Affiliated Hosp, Dept Pathol, Guiyang 550004, Peoples R China
关键词
OXIDATIVE STRESS; EPITHELIAL-CELLS; LUNG; APOPTOSIS; PATHOGENESIS; RADIOTHERAPY; INFLAMMATION; FIBROBLASTS; MECHANISMS; AUTOPHAGY;
D O I
10.1038/s41598-023-34060-8
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Amifostine is a normal cell protection agent, not only used in the adjuvant therapy of lung cancer, ovarian cancer, breast cancer, nasopharyngeal cancer, bone tumor, digestive tract tumor, blood system tumor and other cancers in order to reduce the toxicity of chemotherapy drugs, and recent studies have reported that the drug can also reduce lung tissue damage in patients with pulmonary fibrosis, but its mechanism of action is not yet fully understood. In this study, we explored the potential therapeutic effects and molecular mechanisms of AMI on bleomycin (BLM)-induced pulmonary fibrosis in mice. A mouse model of pulmonary fibrosis was established using BLM. We then assessed histopathological changes, inflammatory factors, oxidative indicators, apoptosis, epithelial-mesenchymal transition, extracellular matrix changes, and levels of phosphatidylinositol 3-kinase (PI3K)/Akt/mammalian target of rapamycin (mTOR) signaling pathway-related proteins in the BLM-treated mice to determine the effect of AMI treatment on these factors. BLM-treated mice had substantial lung inflammation and abnormal extracellular matrix deposition. Overall, treatment with AMI significantly improved BLM-induced lung injury and pulmonary fibrosis. More specifically, AMI alleviated BLM-induced oxidative stress, inflammation, alveolar cell apoptosis, epithelial-mesenchymal transition, and extracellular matrix deposition by regulating the PI3K/Akt/mTOR signaling pathway. This finding that AMI can alleviate pulmonary fibrosis in a mouse model by inhibiting activation of the PI3K/Akt/mTOR signaling pathway lays a foundation for potential future clinical application of this agent in patients with pulmonary fibrosis.
引用
收藏
页数:11
相关论文
共 50 条
  • [21] Doxazosin Attenuates Liver Fibrosis by Inhibiting Autophagy in Hepatic Stellate Cells via Activation of the PI3K/Akt/mTOR Signaling Pathway
    Xiu, Ai-Yuan
    Ding, Qian
    Li, Zhen
    Zhang, Chun-Qing
    DRUG DESIGN DEVELOPMENT AND THERAPY, 2021, 15 : 3643 - 3659
  • [22] Resistance to Cisplatin in NSCLC is Related to Autophagy Induced by PI3K/AKT/mTOR Signaling Pathway Inhibition
    Peng, Ling
    Miao, Ya-Fang
    Chen, Hao
    Wang, Qiu-Bo
    Wang, An
    Xue, Fei
    Zhou, Chao
    LATIN AMERICAN JOURNAL OF PHARMACY, 2020, 39 (03): : 482 - 489
  • [23] Leptin promotes pulmonary fibrosis development by inhibiting autophagy via PI3K/Akt/mTOR pathway
    Gui, Xianhua
    Chen, Hongwei
    Cai, Hourong
    Sun, Lingyun
    Gu, Luo
    BIOCHEMICAL AND BIOPHYSICAL RESEARCH COMMUNICATIONS, 2018, 498 (03) : 660 - 666
  • [24] Bergenin attenuates bleomycin-induced pulmonary fibrosis in mice via inhibiting TGF-β1 signaling pathway
    Li, Xiaohe
    Wang, Yanhua
    Liang, Jingjing
    Bi, Zhun
    Ruan, Hao
    Cui, Yunyao
    Ma, Ling
    Wei, Yuli
    Zhou, Bingchen
    Zhang, Liang
    Zhou, Honggang
    Yang, Cheng
    PHYTOTHERAPY RESEARCH, 2021, 35 (10) : 5808 - 5822
  • [25] Deglycosylated Azithromycin Attenuates Bleomycin-Induced Pulmonary Fibrosis via the TGF-β1 Signaling Pathway
    Ruan, Hao
    Gao, Shaoyan
    Li, Shuangling
    Luan, Jiaoyan
    Jiang, Qiuyan
    Li, Xiaohe
    Yin, Huijun
    Zhou, Honggang
    Yang, Cheng
    MOLECULES, 2021, 26 (09):
  • [26] Schisandrin B attenuates bleomycin-induced pulmonary fibrosis in mice through the wingless/integrase-1 signaling pathway
    Wang, Ying
    Dong, Xiaoman
    Zhao, Na
    Su, Xiaoming
    Wang, Yueyang
    Li, Yanfei
    Wen, Meixin
    Li, Zhengyi
    Wang, Chunmei
    Chen, Jianguang
    Zhuang, Wenyue
    EXPERIMENTAL LUNG RESEARCH, 2020, 46 (06) : 185 - 194
  • [27] Sulforaphane Attenuates Endometriosis in Rat Models Through Inhibiting PI3K/Akt Signaling Pathway
    Zhou, Aixiu
    Hong, Yiting
    Lv, Yuchun
    DOSE-RESPONSE, 2019, 17 (02):
  • [28] Glucocorticoids Enhanced Osteoclast Autophagy Through the PI3K/Akt/mTOR Signaling Pathway
    Fu, Lingjie
    Wu, Wen
    Sun, Xiaojiang
    Zhang, Pu
    CALCIFIED TISSUE INTERNATIONAL, 2020, 107 (01) : 60 - 71
  • [29] Aspirin alleviates pulmonary fibrosis through PI3K/AKT/mTOR-mediated autophagy pathway
    Peng, Jieting
    Xiao, Xun
    Li, Shizhen
    Lyu, Xing
    Gong, Hui
    Tan, Shengyu
    Dong, Lini
    Sanders, Yan Y.
    Zhang, Xiangyu
    EXPERIMENTAL GERONTOLOGY, 2023, 172
  • [30] Icariin alleviates osteoarthritis through PI3K/Akt/mTOR/ULK1 signaling pathway
    Chen, Yan
    Pan, Xiaoli
    Zhao, Jing
    Li, Chunyan
    Lin, Yupei
    Wang, Yu
    Liu, Xu
    Tian, Mei
    EUROPEAN JOURNAL OF MEDICAL RESEARCH, 2022, 27 (01)