High-performance triboelectric nanogenerators based on TPU/mica nanofiber with enhanced tribo-positivity

被引:24
|
作者
Li, Wenjian [1 ]
Lu, Liqiang [1 ]
Yan, Feng [2 ]
Palasantzas, George [3 ]
Loos, Katja [4 ]
Pei, Yutao [1 ]
机构
[1] Univ Groningen, Engn & Technol Inst Groningen, Fac Sci & Engn, Adv Prod Engn, Nijenborgh 4, NL-9747 AG Groningen, Netherlands
[2] Univ Manchester, Natl Graphene Inst, Manchester M13 9PL, England
[3] Univ Groningen, Zernike Inst Adv Mat, Fac Sci & Engn, Nanostruct Mat & Interfaces, Nijenbogh 4, NL-9747 AG Groningen, Netherlands
[4] Univ Groningen, Fac Sci & Engn, Zernike Inst Adv Mat, Macromol Chem & New Polymer Mat, Nijenbogh 4, NL-9747 AG Groningen, Netherlands
关键词
2D materials; Triboelectric nanogenerator; TENG; MXene; Mica; ENERGY;
D O I
10.1016/j.nanoen.2023.108629
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
As a promising energy harvesting technology, triboelectric nanogenerator (TENG) has brought a leap forward to the development of self-powered systems. Many materials, especially inorganic non-metallic materials, proved to possess excellent triboelectric property, have rarely been practically used due to their fragility and rigidity. Here, fragile and rigid mica with strong triboelectric positivity is exfoliated into 2D nanosheets and electrospun into flexible and stretchable thermoplastic polyurethane (TPU) nanofibers for high-performance TENGs. Paired with polyvinylidene fluoride/MXene (PVDF/MXene) nanofibers, the transferred charge of the TENG with TPU/mica nanofibers significantly enhanced to 82.4 nC from 38.6 nC due to the enhanced tribo-positivity. Kelvin probe force microscopy (KPFM) measurements of single pure TPU and TPU/mica nanofibers showed mica apparently enhanced the positive electrostatic surface potential (ESP) of TPU. The mean peak ESP of pure TPU nanofiber was about 194 mV, while it was increased to 218 mV on the regions of TPU/mica nanofiber without mica nanosheets aggregation and 305 mV on the regions where mica nanosheets aggregated. The power density of the TENG with TPU/mica nanofiber reached 1458 mW/m2, exhibiting a 16-fold enhancement compared with the one based on pure TPU nanofiber. A thin and flexible TENG was fabricated and conformally worn on a wrist and palm for body motion monition and object gripping sorting. This work proposed high-performance triboelectric nanogenerators based on TPU/mica nanofibers and a general approach to effectively utilize rigid and fragile materials with excellent triboelectric property for making triboelectric layers.
引用
收藏
页数:10
相关论文
共 50 条
  • [1] Flexible nanofiber based triboelectric nanogenerators with high power conversion
    Yar, Adem
    Karabiber, Abdulkerim
    Ozen, Abdurrahman
    Ozel, Faruk
    Coskun, Sahin
    RENEWABLE ENERGY, 2020, 162 (162) : 1428 - 1437
  • [2] Dielectric materials for high-performance triboelectric nanogenerators
    Deng Hao-Cheng
    Li Yi
    Tian Shuang-Shuang
    Zhang Xiao-Xing
    Xiao Song
    ACTA PHYSICA SINICA, 2024, 73 (07)
  • [3] Recent advances in high-performance triboelectric nanogenerators
    Liu, Di
    Gao, Yikui
    Zhou, Linglin
    Wang, Jie
    Wang, Zhong Lin
    NANO RESEARCH, 2023, 16 (09) : 11698 - 11717
  • [4] Design and construction of high-performance triboelectric nanogenerators and their biomedical applications
    Zhou, Tianxiang
    Wei, Jingyi
    Zhang, Xinyue
    Wu, Liang
    Guo, Sufang
    An, Qi
    Feng, Zeguo
    Guo, Kaikai
    APPLIED MATERIALS TODAY, 2025, 42
  • [5] Enhanced output performance of tetraethyl orthosilicate and graphene nanoplates-decorated nanofiber-based triboelectric nanogenerators
    Yar, Adem
    COLLOIDS AND SURFACES A-PHYSICOCHEMICAL AND ENGINEERING ASPECTS, 2021, 631
  • [6] High-performance triboelectric nanogenerators based on the organic semiconductor copper phthalocyanine
    You, Zhongyuan
    Chang, Jiawei
    Li, Zezhong
    Lu, Tianyu
    Wang, Shuting
    Wang, Fang
    Hu, Bingxi
    Wang, Hai
    Li, Lian
    Fang, Weihai
    Liu, Ying
    NANOSCALE, 2021, 13 (47) : 20197 - 20204
  • [7] Construction of MXene/PDMS-Based Triboelectric Nanogenerators for High-Performance Cathodic Protection
    Xu, Hui
    Wang, Xiutong
    Niu, Jianmin
    Nan, Youbo
    Pu, Jiayan
    Zhou, Hui
    Duan, Jizhou
    Huang, Yanliang
    Hou, Baorong
    ADVANCED MATERIALS INTERFACES, 2022, 9 (11):
  • [8] Dynamical charge transfer for high-performance triboelectric nanogenerators
    Cui, Xin
    Zhang, Yan
    NANO SELECT, 2020, 1 (05): : 461 - 470
  • [9] Kinematic design for high performance triboelectric nanogenerators with enhanced working frequency
    Kim, Wook
    Hwan, Hee Jae
    Bhatia, Divij
    Lee, Younghoon
    Baik, Jung Min
    Choi, Dukhyun
    NANO ENERGY, 2016, 21 : 19 - 25
  • [10] Leverage Surface Chemistry for High-Performance Triboelectric Nanogenerators
    Xu, Jing
    Zou, Yongjiu
    Nashalian, Ardo
    Chen, Jun
    FRONTIERS IN CHEMISTRY, 2020, 8