Novel view synthesis with compressed sensing as data augmentation for SAR ATR

被引:1
作者
Banas, Katherine M. [1 ]
Hill, Tyler A. [1 ]
Kreucher, Chris [1 ]
Raeker, Brian O. [1 ]
Simpson, Kyle [2 ]
Weeks, Kirk [2 ]
机构
[1] KBR Inc, 900 Victors Way, Ann Arbor, MI 48108 USA
[2] Signature Res Inc, 2045 Fountain Profess Ct, Navarre, FL 32566 USA
来源
ALGORITHMS FOR SYNTHETIC APERTURE RADAR IMAGERY XXX | 2023年 / 12520卷
关键词
novel view synthesis; data augmentation; synthetic aperture radar; automatic target recognition; basis pursuit denoising; transfer learning; deep learning; MSTAR dataset;
D O I
10.1117/12.2664250
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This work investigates the application of compressed sensing algorithms to the problem of novel view synthesis in synthetic aperture radar (SAR). We demonstrate the ability to generate new images of a SAR target from a sparse set of looks at said target, and we show that this can be used as a data augmentation technique for deep learning-based automatic target recognition (ATR). The newly synthesized views can be used both to enlarge the original, sparse training set, and in transfer learning as a source dataset for initial training of the network. The success of the approach is quantified by measuring ATR performance on the MSTAR dataset
引用
收藏
页数:8
相关论文
共 14 条
  • [1] Enhancing Sparsity by Reweighted l1 Minimization
    Candes, Emmanuel J.
    Wakin, Michael B.
    Boyd, Stephen P.
    [J]. JOURNAL OF FOURIER ANALYSIS AND APPLICATIONS, 2008, 14 (5-6) : 877 - 905
  • [2] Target Classification Using the Deep Convolutional Networks for SAR Images
    Chen, Sizhe
    Wang, Haipeng
    Xu, Feng
    Jin, Ya-Qiu
    [J]. IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2016, 54 (08): : 4806 - 4817
  • [3] Coleman CM, 2012, 2012 IEEE STATISTICAL SIGNAL PROCESSING WORKSHOP (SSP), P544, DOI 10.1109/SSP.2012.6319755
  • [4] Zeiler MD, 2012, Arxiv, DOI arXiv:1212.5701
  • [5] Eker T., 2021, THESIS
  • [6] Bridging a Gap in SAR-ATR: Training on Fully Synthetic and Testing on Measured Data
    Inkawhich, Nathan
    Inkawhich, Matthew J.
    Davis, Eric K.
    Majumder, Uttam K.
    Tripp, Erin
    Capraro, Chris
    Chen, Yiran
    [J]. IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2021, 14 : 2942 - 2955
  • [7] Realistic SAR Data Augmentation using Machine Learning Techniques
    Lewis, Benjamin
    DeGuchy, Omar
    Sebastian, Joseph
    Kaminski, John
    [J]. ALGORITHMS FOR SYNTHETIC APERTURE RADAR IMAGERY XXVI, 2019, 10987
  • [8] Data Augmentation Based on Attributed Scattering Centers to Train Robust CNN for SAR ATR
    Lv, Junta
    Liu, Yue
    [J]. IEEE ACCESS, 2019, 7 : 25459 - 25473
  • [9] Masarik M., 2022, SYNTHETIC APERTURE R
  • [10] Standard SAR ATR evaluation experiments using the MSTAR public release data set
    Ross, T
    Worrell, S
    Velten, V
    Mossing, J
    Bryant, M
    [J]. ALGORITHMS FOR SYNTHETIC APERTURE RADAR IMAGERY V, 1998, 3370 : 566 - 573