Machine Learning-Based Anomaly Detection in NFV: A Comprehensive Survey

被引:11
|
作者
Zehra, Sehar [1 ,2 ]
Faseeha, Ummay [1 ,3 ]
Syed, Hassan Jamil [1 ,4 ,5 ]
Samad, Fahad [1 ]
Ibrahim, Ashraf Osman [4 ,6 ]
Abulfaraj, Anas W. [7 ]
Nagmeldin, Wamda [8 ]
机构
[1] Natl Univ Comp & Emerging Sci, FAST Sch Comp, Karachi 75030, Pakistan
[2] Khursheed Govt Girls Degree Coll, Govt Sindh, Coll Educ & Literacy Dept, Karachi 75230, Pakistan
[3] Jinnah Univ Women, Dept Comp Sci, Main Campus, Karachi 74600, Pakistan
[4] Univ Malaysia Sabah, Fac Comp & Informat, Jalan UMS, Kota Kinabalu 88400, Sabah, Malaysia
[5] Univ Malaysia Sabah, Fac Comp & Informat, Cyber Secur Res Lab, Jalan UMS, Kota Kinabalu 88400, Sabah, Malaysia
[6] Univ Malaysia Sabah, Fac Comp & Informat, Creat Adv Machine Intelligence Res Ctr, Jalan UMS, Kota Kinabalu 88400, Sabah, Malaysia
[7] King Abdulaziz Univ, Dept Informat Syst, Rabigh 21911, Saudi Arabia
[8] Prince Sattam bin Abdulaziz Univ, Coll Comp Engn & Sci, Dept Informat Syst, Al Kharj 11942, Saudi Arabia
关键词
network function virtualization (NFV); Internet of Things (IoT); security challenges; anomaly detection; cyber-attacks; machine learning based; supervised learning; unsupervised learning; OF-THE-ART; CHALLENGES; SYSTEMS;
D O I
10.3390/s23115340
中图分类号
O65 [分析化学];
学科分类号
070302 ; 081704 ;
摘要
Network function virtualization (NFV) is a rapidly growing technology that enables the virtualization of traditional network hardware components, offering benefits such as cost reduction, increased flexibility, and efficient resource utilization. Moreover, NFV plays a crucial role in sensor and IoT networks by ensuring optimal resource usage and effective network management. However, adopting NFV in these networks also brings security challenges that must promptly and effectively address. This survey paper focuses on exploring the security challenges associated with NFV. It proposes the utilization of anomaly detection techniques as a means to mitigate the potential risks of cyber attacks. The research evaluates the strengths and weaknesses of various machine learning-based algorithms for detecting network-based anomalies in NFV networks. By providing insights into the most efficient algorithm for timely and effective anomaly detection in NFV networks, this study aims to assist network administrators and security professionals in enhancing the security of NFV deployments, thus safeguarding the integrity and performance of sensors and IoT systems.
引用
收藏
页数:26
相关论文
共 50 条
  • [31] Machine Learning-based Anomaly Detection for Post-silicon Bug Diagnosis
    DeOrio, Andrew
    Li, Qingkun
    Burgess, Matthew
    Bertacco, Valeria
    DESIGN, AUTOMATION & TEST IN EUROPE, 2013, : 491 - 496
  • [32] Recent Advances in Machine Learning-based Anomaly Detection for Industrial Control Networks
    Wang, Qian
    Chen, He
    Li, Yonghui
    Vucetic, Branka
    2019 1ST INTERNATIONAL CONFERENCE ON INDUSTRIAL ARTIFICIAL INTELLIGENCE (IAI 2019), 2019,
  • [33] Machine Learning-Based Anomaly Detection for Multivariate Time Series With Correlation Dependency
    Chauhan, Shashank
    Lee, Sudong
    IEEE ACCESS, 2022, 10 : 132062 - 132070
  • [34] A machine learning-based Anomaly Detection Framework for building electricity consumption data
    Mascali, Lorenzo
    Schiera, Daniele Salvatore
    Eiraudo, Simone
    Barbierato, Luca
    Giannantonio, Roberta
    Patti, Edoardo
    Bottaccioli, Lorenzo
    Lanzini, Andrea
    SUSTAINABLE ENERGY GRIDS & NETWORKS, 2023, 36
  • [35] Machine Learning-Based Anomaly Detection for Multivariate Time Series with Correlation Dependency
    Chauhan, Shashank
    Lee, Sudong
    IEEE Access, 2022, 10 : 132062 - 132070
  • [36] A Comprehensive Survey on Graph Anomaly Detection With Deep Learning
    Ma, Xiaoxiao
    Wu, Jia
    Xue, Shan
    Yang, Jian
    Zhou, Chuan
    Sheng, Quan Z.
    Xiong, Hui
    Akoglu, Leman
    IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, 2023, 35 (12) : 12012 - 12038
  • [37] Machine Learning-Based Modeling for Structural Engineering: A Comprehensive Survey and Applications Overview
    Etim, Bassey
    Al-Ghosoun, Alia
    Renno, Jamil
    Seaid, Mohammed
    Mohamed, M. Shadi
    BUILDINGS, 2024, 14 (11)
  • [38] Machine Learning-based Comprehensive Survey on Lithium-rich Cathode Materials
    Tsuchimoto, Akihisa
    Okubo, Masashi
    Yamada, Atsuo
    ELECTROCHEMISTRY, 2023, 91 (03)
  • [39] Machine Learning-based Intrusion Detection for Smart Grid Computing: A Survey
    Sahani, Nitasha
    Zhu, Ruoxi
    Cho, Jin-Hee
    Liu, Chen-Ching
    ACM TRANSACTIONS ON CYBER-PHYSICAL SYSTEMS, 2023, 7 (02)
  • [40] Internet of Things: A survey on machine learning-based intrusion detection approaches
    da Costa, Kelton A. P.
    Papa, Joao P.
    Lisboa, Celso O.
    Munoz, Roberto
    de Albuquerque, Victor Hugo C.
    COMPUTER NETWORKS, 2019, 151 : 147 - 157