Risk prediction score for clinical outcome in atrial fibrillation and stable coronary artery disease

被引:5
作者
Ishii, Masanobu [1 ]
Kaikita, Koichi [2 ]
Yasuda, Satoshi [3 ]
Akao, Masaharu [4 ]
Ako, Junya [5 ]
Matoba, Tetsuya [6 ]
Nakamura, Masato [7 ]
Miyauchi, Katsumi [8 ]
Hagiwara, Nobuhisa [9 ]
Kimura, Kazuo [10 ]
Hirayama, Atsushi [11 ]
Nishihara, Eiichiro [12 ]
Nakamura, Shinichiro [13 ]
Matsui, Kunihiko [14 ]
Ogawa, Hisao [15 ]
Tsujita, Kenichi [1 ]
机构
[1] Kumamoto Univ, Grad Sch Med Sci, Dept Cardiovasc Med, Kumamoto, Japan
[2] Univ Miyazaki, Fac Med, Dept Internal Med, Div Cardiovasc Med & Nephrol, Miyazaki, Japan
[3] Tohoku Univ, Dept Cardiovasc Med, Grad Sch Med, Sendai, Japan
[4] Natl Hosp Org Kyoto Med Ctr, Dept Cardiol, Kyoto, Japan
[5] Kitasato Univ, Dept Cardiovasc Med, Sch Med, Sagamihara, Japan
[6] Kyushu Univ, Fac Med Sci, Dept Cardiovasc Med, Fukuoka, Japan
[7] Toho Univ, Div Cardiovasc Med, Ohashi Med Ctr, Tokyo, Japan
[8] Juntendo Tokyo Koto Geriatr Med Ctr, Dept Cardiovasc Med, Tokyo, Japan
[9] Tokyo Womens Med Univ, Dept Cardiol, Shinju Ku, Tokyo, Japan
[10] Yokohama City Univ Med Ctr, Cardiovasc Ctr, Yokohama, Japan
[11] Osaka Police Hosp, Dept Cardiol, Osaka, Japan
[12] Chemo Sero Therapeut Res Inst, Kumamoto, Japan
[13] Kumamoto Univ, Excellence Lab Data Sci, Prior Org Innovat, Kumamoto, Japan
[14] Kumamoto Univ Hosp, Dept Gen Med & Primary Care, Kumamoto, Japan
[15] Kumamoto Univ, Kumamoto, Japan
来源
OPEN HEART | 2023年 / 10卷 / 01期
关键词
atrial fibrillation; coronary artery disease; risk factors; DUAL ANTIPLATELET THERAPY; FOCUSED UPDATE; STRATIFICATION; POLYMORPHISMS; GUIDELINES; MANAGEMENT; ALCOHOL; STROKE; ROLES;
D O I
10.1136/openhrt-2023-002292
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
Objective Antithrombotic therapy is essential for patients with atrial fibrillation (AF) and stable coronary artery disease (CAD) because of the high risk of thrombosis, whereas a combination of antiplatelets and anticoagulants is associated with a high risk of bleeding. We sought to develop and validate a machine-learning-based model to predict future adverse events.Methods Data from 2215 patients with AF and stable CAD enrolled in the Atrial Fibrillation and Ischaemic Events With Rivaroxaban in Patients With Stable Coronary Artery Disease trial were randomly assigned to the development and validation cohorts. Using the random survival forest (RSF) and Cox regression models, risk scores were developed for net adverse clinical events (NACE) defined as all-cause death, myocardial infarction, stroke or major bleeding.Results Using variables selected by the Boruta algorithm, RSF and Cox models demonstrated acceptable discrimination and calibration in the validation cohort. Using the variables weighted by HR (age, sex, body mass index, systolic blood pressure, alcohol consumption, creatinine clearance, heart failure, diabetes, antiplatelet use and AF type), an integer-based risk score for NACE was developed and classified patients into three risk groups: low (0-4 points), intermediate (5-8) and high (>= 9). In both cohorts, the integer-based risk score performed well, with acceptable discrimination (area under the curve 0.70 and 0.66, respectively) and calibration (p>0.40 for both). Decision curve analysis showed the superior net benefits of the risk score.Conclusions This risk score can predict the risk of NACE in patients with AF and stable CAD.
引用
收藏
页数:11
相关论文
共 41 条
[1]   A new machine learning technique for an accurate diagnosis of coronary artery disease [J].
Abdar, Moloud ;
Ksiazek, Wojciech ;
Acharya, U. Rajendra ;
Tan, Ru-San ;
Makarenkov, Vladimir ;
Plawiak, Pawel .
COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE, 2019, 179
[2]   Discrimination and Calibration of Clinical Prediction Models Users' Guides to the Medical Literature [J].
Alba, Ana Carolina ;
Agoritsas, Thomas ;
Walsh, Michael ;
Hanna, Steven ;
Iorio, Alfonso ;
Devereaux, P. J. ;
McGinn, Thomas ;
Guyatt, Gordon .
JAMA-JOURNAL OF THE AMERICAN MEDICAL ASSOCIATION, 2017, 318 (14) :1377-1384
[3]   The 2020 Canadian Cardiovascular Society/Canadian Heart Rhythm Society Comprehensive Guidelines for the Management of Atrial Fibrillation [J].
Andrade, Jason G. ;
Aguilar, Martin ;
Atzema, Clare ;
Bell, Alan ;
Cairns, John A. ;
Cheung, Christopher C. ;
Cox, Jafna L. ;
Dorian, Paul ;
Gladstone, David J. ;
Healey, Jeff S. ;
Khairy, Paul ;
Leblanc, Kori ;
McMurtry, M. Sean ;
Mitchell, L. Brent ;
Nair, Girish M. ;
Nattel, Stanley ;
Parkash, Ratika ;
Pilote, Louise ;
Sandhu, Roopinder K. ;
Sarrazin, Jean-Francois ;
Sharma, Mukul ;
Skanes, Allan C. ;
Talajic, Mario ;
Tsang, Teresa S. M. ;
Verma, Atul ;
Verma, Subodh ;
Whitlock, Richard ;
Wyse, D. George ;
Macle, Laurent .
CANADIAN JOURNAL OF CARDIOLOGY, 2020, 36 (12) :1847-1948
[4]   Coronary Thrombosis and Major Bleeding After PCI With Drug-Eluting Stents Risk Scores From PARIS [J].
Baber, Usman ;
Mehran, Roxana ;
Giustino, Gennaro ;
Cohen, David J. ;
Henry, Timothy D. ;
Sartori, Samantha ;
Ariti, Cono ;
Litherland, Claire ;
Dangas, George ;
Gibson, C. Michael ;
Krucoff, Mitchell W. ;
Moliterno, David J. ;
Kirtane, Ajay J. ;
Stone, Gregg W. ;
Colombo, Antonio ;
Chieffo, Alaide ;
Kini, Annapoorna S. ;
Witzenbichler, Bernhard ;
Weisz, Giora ;
Steg, Philippe Gabriel ;
Pocock, Stuart .
JOURNAL OF THE AMERICAN COLLEGE OF CARDIOLOGY, 2016, 67 (19) :2224-2234
[5]   Risk prediction of clinical adverse outcomes with machine learning in a cohort of critically ill patients with atrial fibrillation [J].
Falsetti, Lorenzo ;
Rucco, Matteo ;
Proietti, Marco ;
Viticchi, Giovanna ;
Zaccone, Vincenzo ;
Scarponi, Mattia ;
Giovenali, Laura ;
Moroncini, Gianluca ;
Nitti, Cinzia ;
Salvi, Aldo .
SCIENTIFIC REPORTS, 2021, 11 (01)
[6]   Machine Learning-Derived Fractal Features of Shape and Texture of the Left Atrium and Pulmonary Veins From Cardiac Computed Tomography Scans Are Associated With Risk of Recurrence of Atrial Fibrillation Postablation [J].
Firouznia, Marjan ;
Feeny, Albert K. ;
LaBarbera, Michael A. ;
McHale, Meghan ;
Cantlay, Catherine ;
Kalfas, Natalie ;
Schoenhagen, Paul ;
Saliba, Walid ;
Tchou, Patrick ;
Barnard, John ;
Chung, Mina K. ;
Madabhushi, Anant .
CIRCULATION-ARRHYTHMIA AND ELECTROPHYSIOLOGY, 2021, 14 (03) :329-336
[7]   Decision Curve Analysis [J].
Fitzgerald, Mark ;
Saville, Benjamin R. ;
Lewis, Roger J. .
JAMA-JOURNAL OF THE AMERICAN MEDICAL ASSOCIATION, 2015, 313 (04) :409-410
[8]   Validation of clinical classification schemes for predicting stroke - Results from the national registry of Atrial Fibrillation [J].
Gage, BF ;
Waterman, AD ;
Shannon, W ;
Boechler, M ;
Rich, MW ;
Radford, MJ .
JAMA-JOURNAL OF THE AMERICAN MEDICAL ASSOCIATION, 2001, 285 (22) :2864-2870
[9]   Comparative Effectiveness of Machine Learning Approaches for Predicting Gastrointestinal Bleeds in Patients Receiving Antithrombotic Treatment [J].
Herrin, Jeph ;
Abraham, Neena S. ;
Yao, Xiaoxi ;
Noseworthy, Peter A. ;
Inselman, Jonathan ;
Shah, Nilay D. ;
Ngufor, Che .
JAMA NETWORK OPEN, 2021, 4 (05)
[10]   2020 ESC Guidelines for the diagnosis and management of atrial fibrillation developed in collaboration with the European Association for Cardio-Thoracic Surgery (EACTS) [J].
Hindricks, Gerhard ;
Potpara, Tatjana ;
Dagres, Nikolaos ;
Arbelo, Elena ;
Bax, Jeroen J. ;
Blomstroem-Lundqvist, Carina ;
Boriani, Giuseppe ;
Castella, Manuel ;
Dan, Gheorghe-Andrei ;
Dilaveris, Polychronis E. ;
Fauchier, Laurent ;
Filippatos, Gerasimos ;
Kalman, Jonathan M. ;
La Meir, Mark ;
Lane, Deirdre A. ;
Lebeau, Jean-Pierre ;
Lettino, Maddalena ;
Lip, Gregory Y. H. ;
Pinto, Fausto J. ;
Thomas, G. Neil ;
Valgimigli, Marco ;
Van Gelder, Isabelle C. ;
Van Putte, Bart P. ;
Watkins, Caroline L. .
EUROPEAN HEART JOURNAL, 2021, 42 (05) :373-498