Compressive strength prediction of admixed HPC concrete by hybrid deep learning approaches

被引:4
|
作者
Weng, Peng [1 ]
Xie, JingJing [1 ]
Zou, Yang [2 ]
机构
[1] Changzhou Univ, Huaide Coll, JingJiang, Peoples R China
[2] Shanghai Construct 2 Grp Co Ltd, Shanghai, Peoples R China
关键词
HPC concrete; compressive strength; deep learning; arithmetic optimization algorithm; grasshopper optimization algorithm; ARTIFICIAL NEURAL-NETWORK; HIGH-PERFORMANCE CONCRETE; FLY-ASH; SILICA FUME; MICRO-SILICA; NANO-SILICA; MECHANICAL-PROPERTIES; AGGREGATE CONCRETE; TENSILE-STRENGTH; MICROSTRUCTURE;
D O I
10.3233/JIFS-221714
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The estimation of compressive strength includes time-consuming, finance-wasting, and laboring approaches to undertaking High-performance concrete (HPC) production. On the other side, a vast volume of concrete consumption in industrial construction requires an optimal mix design with different percentages to reach the highest compressive strength. The present study considered two deep learning approaches to handle compressive strength prediction. The robustness of the deep model was put high through two novel optimization algorithms as a novelty in the research world that played their precise roles in charge of model structure optimization. Also, a dataset containing cement, silica fume, fly ash, the total aggregate amount, the coarse aggregate amount, superplasticizer, water, curing time, and high-performance concrete compressive strength was used to develop models. The results indicate that the AMLP-I and GMLP-I models served the highest prediction accuracy. R-2 and RMSE of AMLP-I stood at 0.9895 and 1.7341, respectively, which declared that the AMLP-I model could be presented as the robust model for estimating compressive strength. Generally, using optimization algorithms to boost the capabilities of prediction models by tuning the internal characteristics has increased the reliability of artificial intelligent approaches to substitute the more experimental practices.
引用
收藏
页码:8711 / 8724
页数:14
相关论文
共 50 条
  • [31] Environmentally Friendly Concrete Compressive Strength Prediction Using Hybrid Machine Learning
    Mansouri, Ehsan
    Manfredi, Maeve
    Hu, Jong-Wan
    SUSTAINABILITY, 2022, 14 (20)
  • [32] Compressive strength prediction of fly ash concrete by using machine learning techniques
    Khursheed, Suhaila
    Jagan, J.
    Samui, Pijush
    Kumar, Sanjay
    INNOVATIVE INFRASTRUCTURE SOLUTIONS, 2021, 6 (03)
  • [33] Prediction of Geopolymer Concrete Compressive Strength Using Novel Machine Learning Algorithms
    Ahmad, Ayaz
    Ahmad, Waqas
    Chaiyasarn, Krisada
    Ostrowski, Krzysztof Adam
    Aslam, Fahid
    Zajdel, Paulina
    Joyklad, Panuwat
    POLYMERS, 2021, 13 (19)
  • [34] Experimental study and machine learning based prediction of the compressive strength of geopolymer concrete
    Tran, Ngoc Thanh
    Nguyen, Duy Hung
    Tran, Quang Thanh
    Le, Huy Viet
    Nguyen, Duy-Liem
    MAGAZINE OF CONCRETE RESEARCH, 2024, 76 (13) : 723 - 737
  • [35] Compressive Strength Prediction of Lightweight Concrete: Machine Learning Models
    Kumar, Aman
    Arora, Harish Chandra
    Kapoor, Nishant Raj
    Mohammed, Mazin Abed
    Kumar, Krishna
    Majumdar, Arnab
    Thinnukool, Orawit
    SUSTAINABILITY, 2022, 14 (04)
  • [36] Machine Learning Technique for the Prediction of Blended Concrete Compressive Strength
    Dawood S. A. Jubori
    Abu B. Nabilah
    Nor A. Safiee
    Aidi H. Alias
    Noor A. M. Nasir
    KSCE Journal of Civil Engineering, 2024, 28 : 817 - 835
  • [37] A Comprehensive Study on the Estimation of Concrete Compressive Strength Using Machine Learning Models
    Altunci, Yusuf Tahir
    BUILDINGS, 2024, 14 (12)
  • [38] Use Of RBF Model In GOA And MPA Optimizers To Estimate The Compressive Strength Of Concrete In The HPC Model
    Pang, Mengyao
    Yan, Gongxing
    Li, Jie
    Zhou, Minggui
    JOURNAL OF APPLIED SCIENCE AND ENGINEERING, 2023, 26 (10): : 1427 - 1439
  • [39] Prediction of Concrete Compressive Strength and Slump by Machine Learning Methods
    Cihan, M. Timur
    ADVANCES IN CIVIL ENGINEERING, 2019, 2019
  • [40] A study on compressive strength of ultrafine graded fly ash replaced concrete and machine learning approaches in its strength prediction
    Suprakash, Adapala Sunny
    Karthiyaini, Somasundaram
    Shanmugasundaram, Muthusamy
    STRUCTURAL CONCRETE, 2022, 23 (06) : 3849 - 3863