Modeling water phenomena in the cathode side of polymer electrolyte fuel cells

被引:5
|
作者
Zhang, Yufan [1 ,2 ]
Agravante, Gerard [3 ]
Kadyk, Thomas [1 ,4 ]
Eikerling, Michael H. [1 ,2 ,4 ]
机构
[1] Forschungszentrum Julich, Inst Energy & Climate Res, Theory & Computat Energy Mat IEK 13, D-52425 Julich, Germany
[2] Rhein Westfal TH Aachen, Fac Georesources & Mat Engn, Chair Theory & Computat Energy Mat, D-52062 Aachen, Germany
[3] Univ Calgary, Dept Chem & Petr Engn, Calgary, AB T2N 1N4, Canada
[4] JARA Energy, Julich Aachen Res Alliance, D-52425 Julich, Germany
关键词
GAS-DIFFUSION LAYERS; LIQUID WATER; MICROPOROUS LAYER; CATALYST LAYERS; 2-PHASE FLOW; SATURATION; TRANSPORT; PERFORMANCE; MANAGEMENT; CONTINUUM;
D O I
10.1016/j.electacta.2023.142228
中图分类号
O646 [电化学、电解、磁化学];
学科分类号
081704 ;
摘要
Water exerts a crucial influence on the performance of a polymer electrolyte fuel cell as both "catalyst activating agent" and "oxygen blocker". Therefore, fine-tuning the water distribution is imperative for high performance. In this work, we present a water balance model to calculate the distribution of liquid water in cathode catalyst layer and diffusion media. The model incorporates the influence of the local liquid water saturation on the effective transport properties. Liquid water saturation is both a composition variable determining the effective properties and a variable that depends on the solution of the transport equations that use the effective properties. The model reveals the formation of a thin water layer in the diffusion medium adjacent to the catalyst layer at high current density. This interfacial water layer strongly impedes oxygen transport and reduces the oxygen concentration in the catalyst layer, which causes a drastic increase in the voltage loss at high current density that drastically reduces the cell performance. We elucidate the origin of the water layer, present parametric studies of this effect, and propose mitigation strategies. The fundamental understanding gained will aid the development of membrane electrode assemblies with tailored pore network properties to achieve vital improvements in performance.
引用
收藏
页数:12
相关论文
共 50 条
  • [1] Analyzing and Modeling of Water Transport Phenomena in Open-Cathode Polymer Electrolyte Membrane Fuel Cell
    Yuan, Wei-Wei
    Ou, Kai
    Jung, Seunghun
    Kim, Young-Bae
    APPLIED SCIENCES-BASEL, 2021, 11 (13):
  • [2] Modeling of Transport Phenomena In Polymer Electrolyte Fuel Cells
    Suh, Dong Myung
    Park, S. B.
    2010 12TH IEEE INTERSOCIETY CONFERENCE ON THERMAL AND THERMOMECHANICAL PHENOMENA IN ELECTRONIC SYSTEMS, 2010,
  • [3] On the modeling of water transport in polymer electrolyte membrane fuel cells
    Wu, Hao
    Li, Xianguo
    Berg, Peter
    ELECTROCHIMICA ACTA, 2009, 54 (27) : 6913 - 6927
  • [4] Dynamic modeling of the effect of water management on polymer electrolyte fuel cells performance
    Culubret, S.
    Rubio, M. A.
    Sanchez, D. G.
    Urquia, A.
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2020, 45 (09) : 5710 - 5722
  • [5] Modeling the performance of electrosprayed catalyst layers in the cathode of polymer electrolyte membrane fuel cells
    Garcia-Salaberri, Pablo A.
    Duque, Luis
    Folgado, Maria Antonia
    Diaz-Alvarez, Ester
    Chaparro, Antonio M.
    FUEL, 2025, 380
  • [6] Fabrication of microstructure controlled cathode catalyst layers and their effect on water management in polymer electrolyte fuel cells
    Yim, Sung-Dae
    Sohn, Young-Jun
    Park, Seok-Hee
    Yoon, Young-Gi
    Park, Gu-Gon
    Yang, Tae-Hyun
    Kim, Chang-Soo
    ELECTROCHIMICA ACTA, 2011, 56 (25) : 9064 - 9073
  • [7] Two-phase flow modeling for the cathode side of a polymer electrolyte fuel cell
    Qin, Chaozhong
    Rensink, Dirk
    Fell, Stephan
    Hassanizadeh, S. Majid
    JOURNAL OF POWER SOURCES, 2012, 197 : 136 - 144
  • [8] Liquid Water Visualization in the Pt-Loading Cathode Catalyst Layers of Polymer Electrolyte Fuel Cells Using Operando Synchrotron X-ray Radiography
    Yoshimune, Wataru
    Kato, Akihiko
    Hayakawa, Tetsuichiro
    Yamaguchi, Satoshi
    Kato, Satoru
    ADVANCED ENERGY AND SUSTAINABILITY RESEARCH, 2024, 5 (10):
  • [9] Water balance model for polymer electrolyte fuel cells with ultrathin catalyst layers
    Chan, Karen
    Eikerling, Michael
    PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2014, 16 (05) : 2106 - 2117
  • [10] Measurement of Net Water Drag Coefficients in Polymer Electrolyte Fuel Cells under Cathode-Dry Conditions
    Ito, Hiroshi
    Ishikawa, Tatsuya
    Ishida, Masayoshi
    Someya, Satoshi
    Munakata, Tetsuo
    JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2019, 166 (15) : F1117 - F1127