Selective element domain interpolation technique for assumed rotations and shear strains in polygonal finite element thick/thin plate analysis

被引:7
作者
Nguyen, Son H. [1 ,2 ]
Phan, Duc-Huynh [3 ]
机构
[1] Van Lang Univ, Inst Computat Sci & Artificial Intelligence, Lab Computat Mech, Ho Chi Minh City, Vietnam
[2] Van Lang Univ, Fac Mech Elect & Comp Engn, Sch Technol, Ho Chi Minh City, Vietnam
[3] Ho Chi Minh City Univ Technol & Educ, Fac Civil Engn, Ho Chi Minh City, Vietnam
关键词
Reissner-Mindlin plates; Polygonal finite element methods; Selective element domain interpolation; technique; Timoshenko?s beam; Shear-locking; THIN;
D O I
10.1016/j.tws.2023.110677
中图分类号
TU [建筑科学];
学科分类号
0813 ;
摘要
This paper proposes a novel selective element domain interpolation technique, named SI-ARS-Poly, to develop a high-performance spatially isotropic polygonal element for thick/thin plate analysis. In the SI-ARS-Poly approach, nodal assumed rotations on the element boundaries are directly computed at the mid-nodes of element edges by linearly approximating based on the first-order one-dimensional shape functions. Then, a selective interpolation scheme is applied to approximate the nodal assumed rotations and shear strains on element boundaries into the element domain using piecewise-linear-based first-and second-order shape functions. The proposed method passes spatially isotropic, zero-energy mode, and bending path tests, and exhibits a high performance with uniform and excellent convergent rates compared to existing methods.
引用
收藏
页数:14
相关论文
共 34 条
  • [1] A 4-NODE PLATE BENDING ELEMENT BASED ON MINDLIN REISSNER PLATE-THEORY AND A MIXED INTERPOLATION
    BATHE, KJ
    DVORKIN, EN
    [J]. INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 1985, 21 (02) : 367 - 383
  • [2] Measuring the convergence behavior of shell analysis schemes
    Bathe, Klaus-Juergen
    Lee, Phill-Seung
    [J]. COMPUTERS & STRUCTURES, 2011, 89 (3-4) : 285 - 301
  • [3] VIRTUAL ELEMENTS FOR A SHEAR-DEFLECTION FORMULATION OF REISSNER-MINDLIN PLATES
    Beirao Da Veiga, L.
    Mora, D.
    Rivera, G.
    [J]. MATHEMATICS OF COMPUTATION, 2019, 88 (315) : 149 - 178
  • [4] Virtual Elements for the Reissner-Mindlin plate problem
    Chinosi, Claudia
    [J]. NUMERICAL METHODS FOR PARTIAL DIFFERENTIAL EQUATIONS, 2018, 34 (04) : 1117 - 1144
  • [5] First-order VEM for Reissner-Mindlin plates
    D'Altri, A. M.
    Patruno, L.
    de Miranda, S.
    Sacco, E.
    [J]. COMPUTATIONAL MECHANICS, 2022, 69 (01) : 315 - 333
  • [6] Dvorkin E., 1984, ENG COMPUT-GERMANY, V1, P77, DOI [10.1108/eb023562, DOI 10.1108/EB023562]
  • [7] Mean value coordinates
    Floater, MS
    [J]. COMPUTER AIDED GEOMETRIC DESIGN, 2003, 20 (01) : 19 - 27
  • [8] Linear smoothed polygonal and polyhedral finite elements
    Francis, Amrita
    Ortiz-Bernardin, Alejandro
    Bordas, Stephane P. A.
    Natarajan, Sundararajan
    [J]. INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 2017, 109 (09) : 1263 - 1288
  • [9] KATILI I, 1993, INT J NUMER METH ENG, V36, P1885, DOI 10.1002/nme.1620361107
  • [10] A unified polygonal locking-free thin/thick smoothed plate element
    Katili, Irwan
    Maknun, Imam Jauhari
    Katili, Andi Makarim
    Bordas, Stephane P. A.
    Natarajan, Sundararajan
    [J]. COMPOSITE STRUCTURES, 2019, 219 : 147 - 157