Physics-Driven Deep Learning for Computational Magnetic Resonance Imaging: Combining physics and machine learning for improved medical imaging

被引:0
|
作者
Hammernik, Kerstin [1 ,2 ]
Kustner, Thomas [3 ,4 ]
Yaman, Burhaneddin [5 ]
Huang, Zhengnan [6 ]
Rueckert, Daniel [7 ,8 ]
Knoll, Florian [9 ,10 ]
Akcakaya, Mehmet [11 ,12 ]
机构
[1] Tech Univ Munich, Dept Informat, D-85748 Garching, Germany
[2] Imperial Coll London, Dept Comp, London SW7 2AZ, England
[3] Kings Coll London, Sch Biomed Engn & Imaging Sci, London, England
[4] Univ Hosp Tubingen, Grp Med Imaging & Data Anal, D-72076 Tubingen, Germany
[5] Univ Minnesota, Elect Engn, Minneapolis, MN 55455 USA
[6] New York Univ, Ctr Biomed Imaging, Sch Med, New York, NY 10016 USA
[7] Tech Univ Munich, Artificial Intelligence Med & Healthcare, D-85748 Garching, Germany
[8] Imperial Coll London, Visual Informat Proc, Dept Comp, London SW7 2AZ, England
[9] New York Univ, Radiol, Ctr Biomed Imaging, Grossman Sch Med, New York, NY USA
[10] Friedrich Alexander Univ Erlangen Nuremberg, Dept Artificial Intelligence Biomed Engn, D-91052 Erlangen, Germany
[11] Harvard Med Sch, Boston, MA USA
[12] Univ Minnesota, Minneapolis, MN 55455 USA
基金
美国国家科学基金会; 英国工程与自然科学研究理事会; 美国国家卫生研究院;
关键词
Deep learning; Inverse problems; Magnetic resonance imaging; Computational modeling; Pipelines; Signal processing; Task analysis; K-SPACE; RECONSTRUCTION; NETWORKS; MODELS;
D O I
10.1109/MSP.2022.3215288
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Physics-driven deep learning methods have emerged as a powerful tool for computational magnetic resonance imaging (MRI) problems, pushing reconstruction performance to new limits. This article provides an overview of the recent developments in incorporating physics information into learning-based MRI reconstruction. We consider inverse problems with both linear and nonlinear forward models for computational MRI and review the classical approaches for solving these. We then focus on physics-driven deep learning approaches, covering physics-driven loss functions, plug-and-play (PnP) methods, generative models, and unrolled networks. We highlight domain-specific challenges, such as real- and complex-valued building blocks of neural networks, and translational applications in MRI with linear and nonlinear forward models. Finally, we discuss common issues and open challenges, and we draw connections to the importance of physics-driven learning when combined with other downstream tasks in the medical imaging pipeline.
引用
收藏
页码:98 / 114
页数:17
相关论文
共 50 条
  • [41] Changing the Contrast of Magnetic Resonance Imaging Signals using Deep Learning
    Simko, Attila
    Lofstedt, Tommy
    Garpebring, Anders
    Bylund, Mikael
    Nyholm, Tufve
    Jonsson, Joakim
    MEDICAL IMAGING WITH DEEP LEARNING, VOL 143, 2021, 143 : 713 - 727
  • [42] Machine learning applications in prostate cancer magnetic resonance imaging
    Cuocolo, Renato
    Cipullo, Maria Brunella
    Stanzione, Arnaldo
    Ugga, Lorenzo
    Romeo, Valeria
    Radice, Leonardo
    Brunetti, Arturo
    Imbriaco, Massimo
    EUROPEAN RADIOLOGY EXPERIMENTAL, 2019, 3 (01)
  • [43] Machine learning applications in prostate cancer magnetic resonance imaging
    Renato Cuocolo
    Maria Brunella Cipullo
    Arnaldo Stanzione
    Lorenzo Ugga
    Valeria Romeo
    Leonardo Radice
    Arturo Brunetti
    Massimo Imbriaco
    European Radiology Experimental, 3
  • [44] On the use of deep learning for computational imaging
    Barbastathis, George
    Ozcan, Aydogan
    Situ, Guohai
    OPTICA, 2019, 6 (08): : 921 - 943
  • [45] Deep learning in medical imaging and radiation therapy
    Sahiner, Berkman
    Pezeshk, Aria
    Hadjiiski, Lubomir M.
    Wang, Xiaosong
    Drukker, Karen
    Cha, Kenny H.
    Summers, Ronald M.
    Giger, Maryellen L.
    MEDICAL PHYSICS, 2019, 46 (01) : e1 - e36
  • [46] A 3-D Magnetotelluric Inversion Method Based on the Joint Data-Driven and Physics-Driven Deep Learning Technology
    Ling, Weiwei
    Pan, Kejia
    Zhang, Jiajing
    He, Dongdong
    Zhong, Xin
    Ren, Zhengyong
    Tang, Jingtian
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2024, 62 : 1 - 13
  • [47] Artificial Intelligence and Deep Learning in Musculoskeletal Magnetic Resonance Imaging
    Baek, Seung Dae
    Lee, Joohee
    Kim, Sungjun
    Song, Ho-Taek
    Lee, Young Han
    INVESTIGATIVE MAGNETIC RESONANCE IMAGING, 2023, 27 (02) : 67 - 74
  • [48] Combination Use of Compressed Sensing and Deep Learning for Shoulder Magnetic Resonance Imaging With Various Sequences
    Shiraishi, Kaori
    Nakaura, Takeshi
    Uetani, Hiroyuki
    Nagayama, Yasunori
    Kidoh, Masafumi
    Kobayashi, Naoki
    Morita, Kosuke
    Yamahita, Yuichi
    Miyamoto, Takeshi
    Hirai, Toshinori
    JOURNAL OF COMPUTER ASSISTED TOMOGRAPHY, 2023, 47 (02) : 277 - 283
  • [49] Preclinical magnetic resonance imaging and spectroscopy in the fields of radiological technology, medical physics, and radiology
    Saito, Shigeyoshi
    Ueda, Junpei
    RADIOLOGICAL PHYSICS AND TECHNOLOGY, 2024, 17 (01) : 47 - 59
  • [50] Preclinical magnetic resonance imaging and spectroscopy in the fields of radiological technology, medical physics, and radiology
    Shigeyoshi Saito
    Junpei Ueda
    Radiological Physics and Technology, 2024, 17 : 47 - 59