Physics-Driven Deep Learning for Computational Magnetic Resonance Imaging: Combining physics and machine learning for improved medical imaging

被引:0
|
作者
Hammernik, Kerstin [1 ,2 ]
Kustner, Thomas [3 ,4 ]
Yaman, Burhaneddin [5 ]
Huang, Zhengnan [6 ]
Rueckert, Daniel [7 ,8 ]
Knoll, Florian [9 ,10 ]
Akcakaya, Mehmet [11 ,12 ]
机构
[1] Tech Univ Munich, Dept Informat, D-85748 Garching, Germany
[2] Imperial Coll London, Dept Comp, London SW7 2AZ, England
[3] Kings Coll London, Sch Biomed Engn & Imaging Sci, London, England
[4] Univ Hosp Tubingen, Grp Med Imaging & Data Anal, D-72076 Tubingen, Germany
[5] Univ Minnesota, Elect Engn, Minneapolis, MN 55455 USA
[6] New York Univ, Ctr Biomed Imaging, Sch Med, New York, NY 10016 USA
[7] Tech Univ Munich, Artificial Intelligence Med & Healthcare, D-85748 Garching, Germany
[8] Imperial Coll London, Visual Informat Proc, Dept Comp, London SW7 2AZ, England
[9] New York Univ, Radiol, Ctr Biomed Imaging, Grossman Sch Med, New York, NY USA
[10] Friedrich Alexander Univ Erlangen Nuremberg, Dept Artificial Intelligence Biomed Engn, D-91052 Erlangen, Germany
[11] Harvard Med Sch, Boston, MA USA
[12] Univ Minnesota, Minneapolis, MN 55455 USA
基金
美国国家科学基金会; 英国工程与自然科学研究理事会; 美国国家卫生研究院;
关键词
Deep learning; Inverse problems; Magnetic resonance imaging; Computational modeling; Pipelines; Signal processing; Task analysis; K-SPACE; RECONSTRUCTION; NETWORKS; MODELS;
D O I
10.1109/MSP.2022.3215288
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Physics-driven deep learning methods have emerged as a powerful tool for computational magnetic resonance imaging (MRI) problems, pushing reconstruction performance to new limits. This article provides an overview of the recent developments in incorporating physics information into learning-based MRI reconstruction. We consider inverse problems with both linear and nonlinear forward models for computational MRI and review the classical approaches for solving these. We then focus on physics-driven deep learning approaches, covering physics-driven loss functions, plug-and-play (PnP) methods, generative models, and unrolled networks. We highlight domain-specific challenges, such as real- and complex-valued building blocks of neural networks, and translational applications in MRI with linear and nonlinear forward models. Finally, we discuss common issues and open challenges, and we draw connections to the importance of physics-driven learning when combined with other downstream tasks in the medical imaging pipeline.
引用
收藏
页码:98 / 114
页数:17
相关论文
共 50 条
  • [31] Machine learning in Magnetic Resonance Imaging: Image reconstruction
    Montalt-Tordera, Javier
    Muthurangu, Vivek
    Hauptmann, Andreas
    Steeden, Jennifer Anne
    PHYSICA MEDICA-EUROPEAN JOURNAL OF MEDICAL PHYSICS, 2021, 83 : 79 - 87
  • [32] The use of machine learning and deep learning algorithms in functional magnetic resonance imaging-A systematic review
    Rashid, Mamoon
    Singh, Harjeet
    Goyal, Vishal
    EXPERT SYSTEMS, 2020, 37 (06)
  • [33] Lensless Imaging Based on Dual-Input Physics-Driven Neural Network
    Zuo, Jiale
    Tang, Ju
    Zhang, Mengmeng
    Zhang, Jiawei
    Ren, Zhenbo
    Di, Jianglei
    Zhao, Jianlin
    ADVANCED PHOTONICS RESEARCH, 2024, 5 (11):
  • [34] Physics-based reconstruction methods for magnetic resonance imaging
    Wang, Xiaoqing
    Tan, Zhengguo
    Scholand, Nick
    Roeloffs, Volkert
    Uecker, Martin
    PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2021, 379 (2200):
  • [35] Machine Learning in Medical Imaging
    Giger, Maryellen L.
    JOURNAL OF THE AMERICAN COLLEGE OF RADIOLOGY, 2018, 15 (03) : 512 - 520
  • [36] Propagating Uncertainty Across Cascaded Medical Imaging Tasks for Improved Deep Learning Inference
    Mehta, Raghav
    Christinck, Thomas
    Nair, Tanya
    Bussy, Aurelie
    Premasiri, Swapna
    Costantino, Manuela
    Chakravarthy, M. Mallar
    Arnold, Douglas L.
    Gal, Yarin
    Arbel, Tal
    IEEE TRANSACTIONS ON MEDICAL IMAGING, 2022, 41 (02) : 360 - 373
  • [37] Intra voxel analysis in magnetic resonance imaging via deep learning
    Autorino, Maria Maddalena
    Franceschini, Stefano
    Ambrosanio, Michele
    Pascazio, Vito
    Baselice, Fabio
    INTERNATIONAL JOURNAL OF IMAGING SYSTEMS AND TECHNOLOGY, 2024, 34 (01)
  • [38] Deep Learning in Medical Imaging
    Kim, Mingyu
    Yun, Jihye
    Cho, Yongwon
    Shin, Keewon
    Jang, Ryoungwoo
    Bae, Hyun-jin
    Kim, Namkug
    NEUROSPINE, 2019, 16 (04) : 657 - 668
  • [39] Deep-Learning Optimized Reconfigurable Metasurface for Magnetic Resonance Imaging
    Mueller, Johannes
    Falchi, Martina
    Stoja, Endri
    Konstandin, Simon
    Guenther, Matthias
    Brizi, Danilo
    Usai, Pierpaolo
    Monorchio, Agostino
    Philipp, Dennis
    2024 18TH EUROPEAN CONFERENCE ON ANTENNAS AND PROPAGATION, EUCAP, 2024,
  • [40] Multi-scale Unrolled Deep Learning Framework for Accelerated Magnetic Resonance Imaging
    Nakarmi, Ukash
    Cheng, Joseph Y.
    Rios, Edgar P.
    Mardani, Morteza
    Pauly, John M.
    Ying, Leslie
    Vasanawala, Shreyas S.
    2020 IEEE 17TH INTERNATIONAL SYMPOSIUM ON BIOMEDICAL IMAGING (ISBI 2020), 2020, : 1052 - 1055