On the performance of some new ridge parameter estimators in the Poisson-inverse Gaussian ridge regression

被引:6
|
作者
Batool, Asia [1 ]
Amin, Muhammad [1 ]
Elhassanein, Ahmed [2 ,3 ]
机构
[1] Univ Sargodha, Dept Stat, Sargodha, Pakistan
[2] Univ Bisha, Coll Sci, Dept Math, POB 551, Bisha 61922, Saudi Arabia
[3] Damanhour Univ, Fac Sci, Dept Math, Damanhour, Egypt
关键词
MLE; Multicollinearity; Poisson-inverse Gaussian regression; Over-dispersion; Ridge estimator; BIASED ESTIMATION; SIMULATION; MODEL;
D O I
10.1016/j.aej.2023.02.037
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
The Poisson Inverse Gaussian Regression model (PIGRM) is used for modeling the count datasets to deal with the issue of over-dispersion. Generally, the maximum likelihood estima-tor (MLE) is used to estimate the PIGRM estimates. In the PIGRM, when the explanatory vari-ables are correlated, the MLE does not provide efficient results. To overcome this problem, we propose a ridge estimator for the PIGRM. The matrix mean square error (MSE) and the scalar MSE properties are derived and then compared with the MLE. In the ridge estimator, ridge param-eter play a significant role, so, this study also proposes different ridge parameter estimators for the PIGRM. The performance of the proposed estimator is evaluated with the help of a simulation study and a real-life application using MSE as a performance evaluation criterion. The simulation study and the real-life application results show the superiority of the proposed parameter estimators as compared to the MLE. (c) 2023 THE AUTHORS. Published by Elsevier BV on behalf of Faculty of Engineering, Alexandria University. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/ licenses/by-nc-nd/4.0/).
引用
收藏
页码:231 / 245
页数:15
相关论文
共 50 条
  • [21] Developing robust ridge estimators for Poisson regression model
    Abonazel, Mohamed R.
    Dawoud, Issam
    CONCURRENCY AND COMPUTATION-PRACTICE & EXPERIENCE, 2022, 34 (15):
  • [22] Restricted ridge estimator in the Inverse Gaussian regression model
    Alsarraf, Israa Najeeb Saeed
    Algamal, Zakariya Yahya
    ELECTRONIC JOURNAL OF APPLIED STATISTICAL ANALYSIS, 2022, 15 (03) : 574 - 587
  • [23] Ridge estimator in a mixed Poisson regression model
    Tharshan, Ramajeyam
    Wijekoon, Pushpakanthie
    COMMUNICATIONS IN STATISTICS-SIMULATION AND COMPUTATION, 2024, 53 (07) : 3253 - 3270
  • [24] Proposed methods in estimating the ridge regression parameter in Poisson regression model
    Alanaz, Mazin M.
    Algamal, Zakariya Yahya
    ELECTRONIC JOURNAL OF APPLIED STATISTICAL ANALYSIS, 2018, 11 (02) : 506 - 515
  • [25] A New Ridge Estimator for the Poisson Regression Model
    Rashad, Nadwa K.
    Algamal, Zakariya Yahya
    IRANIAN JOURNAL OF SCIENCE AND TECHNOLOGY TRANSACTION A-SCIENCE, 2019, 43 (A6): : 2921 - 2928
  • [26] A New Ridge Estimator for the Poisson Regression Model
    Nadwa K. Rashad
    Zakariya Yahya Algamal
    Iranian Journal of Science and Technology, Transactions A: Science, 2019, 43 : 2921 - 2928
  • [27] Modified ridge-type estimator for the inverse Gaussian regression model
    Akram, Muhammad Nauman
    Amin, Muhammad
    Ullah, Muhammad Aman
    Afzal, Saima
    COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2023, 52 (10) : 3314 - 3332
  • [28] Ridge Regression Based on Some Robust Estimators
    Samkar, Hatice
    Alpu, Ozlem
    JOURNAL OF MODERN APPLIED STATISTICAL METHODS, 2010, 9 (02) : 495 - 501
  • [29] A Poisson ridge regression estimator
    Mansson, Kristofer
    Shukur, Ghazi
    ECONOMIC MODELLING, 2011, 28 (04) : 1475 - 1481
  • [30] A note on some new modifications of ridge estimators
    Asar, Yasin
    Genc, Asir
    KUWAIT JOURNAL OF SCIENCE, 2017, 44 (03) : 75 - 82