On the performance of some new ridge parameter estimators in the Poisson-inverse Gaussian ridge regression

被引:6
|
作者
Batool, Asia [1 ]
Amin, Muhammad [1 ]
Elhassanein, Ahmed [2 ,3 ]
机构
[1] Univ Sargodha, Dept Stat, Sargodha, Pakistan
[2] Univ Bisha, Coll Sci, Dept Math, POB 551, Bisha 61922, Saudi Arabia
[3] Damanhour Univ, Fac Sci, Dept Math, Damanhour, Egypt
关键词
MLE; Multicollinearity; Poisson-inverse Gaussian regression; Over-dispersion; Ridge estimator; BIASED ESTIMATION; SIMULATION; MODEL;
D O I
10.1016/j.aej.2023.02.037
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
The Poisson Inverse Gaussian Regression model (PIGRM) is used for modeling the count datasets to deal with the issue of over-dispersion. Generally, the maximum likelihood estima-tor (MLE) is used to estimate the PIGRM estimates. In the PIGRM, when the explanatory vari-ables are correlated, the MLE does not provide efficient results. To overcome this problem, we propose a ridge estimator for the PIGRM. The matrix mean square error (MSE) and the scalar MSE properties are derived and then compared with the MLE. In the ridge estimator, ridge param-eter play a significant role, so, this study also proposes different ridge parameter estimators for the PIGRM. The performance of the proposed estimator is evaluated with the help of a simulation study and a real-life application using MSE as a performance evaluation criterion. The simulation study and the real-life application results show the superiority of the proposed parameter estimators as compared to the MLE. (c) 2023 THE AUTHORS. Published by Elsevier BV on behalf of Faculty of Engineering, Alexandria University. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/ licenses/by-nc-nd/4.0/).
引用
收藏
页码:231 / 245
页数:15
相关论文
共 50 条
  • [1] Performance of Alternative Estimators in the Poisson-Inverse Gaussian Regression Model: Simulation and Application
    Ashraf B.
    Amin M.
    Mahmood T.
    Faisal M.
    Applied Mathematics and Nonlinear Sciences, 2024, 9 (01)
  • [2] New ridge parameter estimators for the quasi-Poisson ridge regression model
    Shahzad, Aamir
    Amin, Muhammad
    Emam, Walid
    Faisal, Muhammad
    SCIENTIFIC REPORTS, 2024, 14 (01)
  • [3] New ridge parameter estimators for the zero-inflated Conway Maxwell Poisson ridge regression model
    Ashraf, Bushra
    Amin, Muhammad
    Akram, Muhammad Nauman
    JOURNAL OF STATISTICAL COMPUTATION AND SIMULATION, 2024, 94 (08) : 1814 - 1840
  • [4] Performance of some new ridge regression estimators
    Suhail, Muhammad
    Chand, Sohail
    2019 13TH INTERNATIONAL CONFERENCE ON MATHEMATICS, ACTUARIAL SCIENCE, COMPUTER SCIENCE AND STATISTICS (MACS-13), 2019,
  • [5] Performance of Some Logistic Ridge Regression Estimators
    Kibria, B. M. Golam
    Mansson, Kristofer
    Shukur, Ghazi
    COMPUTATIONAL ECONOMICS, 2012, 40 (04) : 401 - 414
  • [6] Performance of Some Logistic Ridge Regression Estimators
    B. M. Golam Kibria
    Kristofer Månsson
    Ghazi Shukur
    Computational Economics, 2012, 40 : 401 - 414
  • [7] Performance of ridge estimator in inverse Gaussian regression model
    Algamal, Zakariya Yahya
    COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2019, 48 (15) : 3836 - 3849
  • [8] A comparison of some new and old robust ridge regression estimators
    Ali, Sajid
    Khan, Himmad
    Shah, Ismail
    Butt, Muhammad Moeen
    Suhail, Muhammad
    COMMUNICATIONS IN STATISTICS-SIMULATION AND COMPUTATION, 2021, 50 (08) : 2213 - 2231
  • [9] Performance of some ridge estimators for the gamma regression model
    Amin, Muhammad
    Qasim, Muhammad
    Amanullah, Muhammad
    Afzal, Saima
    STATISTICAL PAPERS, 2020, 61 (03) : 997 - 1026
  • [10] Some ridge regression estimators for the zero-inflated Poisson model
    Kibria, B. M. Golam
    Mansson, Kristofer
    Shukur, Ghazi
    JOURNAL OF APPLIED STATISTICS, 2013, 40 (04) : 721 - 735