Assessing and mitigating systematic errors in forest attribute maps utilizing harvester and airborne laser scanning data

被引:2
|
作者
Raty, Janne [1 ,2 ]
Hauglin, Marius [1 ]
Astrup, Rasmus [1 ]
Breidenbach, Johannes [1 ]
机构
[1] Norwegian Inst Bioecon Res NIBIO, Hogskoleveien 8, N-1433 As, Norway
[2] Nat Resources Inst Finland LUKE, Yliopistokatu 6, Joensuu 80100, Finland
关键词
cut-to-length harvester data; model-assisted estimation; national forest inventory; airborne LiDAR; large-area esti-mation; INVENTORY; AREA; VOLUME; LIDAR;
D O I
10.1139/cjfr-2022-0053
中图分类号
S7 [林业];
学科分类号
0829 ; 0907 ;
摘要
Cut-to-length harvesters collect useful information for modeling relationships between forest attributes and airborne laser scanning (ALS) data. However, harvesters operate in mature forests, which may introduce selection biases that can result in systematic errors in harvester data-based forest attribute maps. We fitted regression models (harvester models) for volume (V), height (HL), stem frequency (N), above-ground biomass, basal area, and quadratic mean diameter (QMD) using harvester and ALS data. Performances of the harvester models were evaluated using national forest inventory plots in an 8.7 Mha study area. We estimated biases of large-area synthetic estimators and compared efficiencies of model-assisted (MA) estimators with field data-based direct estimators. The harvester models performed better in productive than unproductive forests, but systematic errors occurred in both. The use of MA estimators resulted in efficiency gains that were largest for HL (relative efficiency, RE = 6.0) and smallest for QMD (RE = 1.5). The bias of the synthetic estimator was largest for N (39%) and smallest for V (1%). The latter was due to an overestimation of deciduous and an underestimation of spruce forests that by chance balanced. We conclude that a probability sample of reference observations may be required to ensure the unbiasedness of estimators utilizing harvester data.
引用
收藏
页码:284 / 301
页数:18
相关论文
共 50 条
  • [21] Modeling Mediterranean forest structure using airborne laser scanning data
    Bottalico, Francesca
    Chirici, Gherardo
    Giannini, Raffaello
    Mele, Salvatore
    Mura, Matteo
    Puxeddu, Michele
    McRobert, Ronald E.
    Valbuena, Ruben
    Travaglini, Davide
    INTERNATIONAL JOURNAL OF APPLIED EARTH OBSERVATION AND GEOINFORMATION, 2017, 57 : 145 - 153
  • [22] Predicting dynamic modulus of elasticity of Norway spruce structural timber by forest inventory, airborne laser scanning and harvester-derived data
    Fischer, Carolin
    Hoibo, Olav A.
    Vestol, Geir I.
    Hauglin, Marius
    Hansen, Endre H.
    Gobakken, Terje
    SCANDINAVIAN JOURNAL OF FOREST RESEARCH, 2018, 33 (06) : 603 - 612
  • [23] Assessing forest windthrow damage using single-date, post-event airborne laser scanning data
    Chirici, Gherardo
    Bottalico, Francesca
    Giannetti, Francesca
    Del Perugia, Barbara
    Travaglini, Davide
    Nocentini, Susanna
    Kutchartt, Erico
    Marchi, Enrico
    Foderi, Cristiano
    Fioravanti, Marco
    Fattorini, Lorenzo
    Bottai, Lorenzo
    McRoberts, Ronald E.
    Naesset, Erik
    Corona, Piermaria
    Gozzini, Bernardo
    FORESTRY, 2018, 91 (01): : 27 - 37
  • [24] Assessing the potential of synthetic and ex situ airborne laser scanning and ground plot data to train forest biomass models
    Schaefer, Jannika
    Winiwarter, Lukas
    Weiser, Hannah
    Novotny, Jan
    Hoefle, Bernhard
    Schmidtlein, Sebastian
    Henniger, Hans
    Krok, Grzegorz
    Sterenczak, Krzysztof
    Fassnacht, Fabian Ewald
    FORESTRY, 2023, 97 (04): : 512 - 530
  • [25] Validating modeled lidar waveforms in forest canopies with airborne laser scanning data
    Ni-Meister, Wenge
    Yang, Wenze
    Lee, Shihyan
    Strahler, Alan H.
    Zhao, Feng
    REMOTE SENSING OF ENVIRONMENT, 2018, 204 : 229 - 243
  • [26] Estimating and mapping forest structural diversity using airborne laser scanning data
    Mura, Matteo
    McRoberts, Ronald E.
    Chirici, Gherardo
    Marchetti, Marco
    REMOTE SENSING OF ENVIRONMENT, 2015, 170 : 133 - 142
  • [27] Multivariate inference for forest inventories using auxiliary airborne laser scanning data
    McRoberts, Ronald E.
    Chen, Qi
    Walters, Brian F.
    FOREST ECOLOGY AND MANAGEMENT, 2017, 401 : 295 - 303
  • [28] Forest Inventory and Diversity Attribute Modelling Using Structural and Intensity Metrics from Multi-Spectral Airborne Laser Scanning Data
    Goodbody, Tristan R. H.
    Tompalski, Piotr
    Coops, Nicholas C.
    Hopkinson, Chris
    Treitz, Paul
    van Ewijk, Karin
    REMOTE SENSING, 2020, 12 (13)
  • [29] Development of Forest Stand Volume Models Based on Airborne Laser Scanning Data
    Zeng W.
    Sun X.
    Wang L.
    Wang W.
    Pu Y.
    1600, Chinese Society of Forestry (57): : 31 - 38
  • [30] Forest transportation survey based on airborne laser scanning data and GIS analyses
    Sackov, Ivan
    Smrecek, Robert
    Tucek, Jan
    GISCIENCE & REMOTE SENSING, 2014, 51 (01) : 83 - 98