Intrusion detection in smart meters data using machine learning algorithms: A research report

被引:5
|
作者
Ravinder, M. [1 ]
Kulkarni, Vikram [1 ]
机构
[1] SVKMs NMIMS Univ, SVKMs NMIMS Mukesh Patel Sch Technol Management &, Dept Informat Technol, Mumbai, India
关键词
smart meter; WSN; AMI; machine learning; intrusion detection; smart grid; ANOMALY DETECTION; SYSTEMS;
D O I
10.3389/fenrg.2023.1147431
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
The intrusion detection in network traffic for crucial smart metering applications based on radio sensor networks is becoming very important in the Smart Grid area. The network's structure for smart meters under investigation should consider important security factors. The potential of both passive and active cyber-attacks affecting the functioning of advanced metering infrastructure is studied and a novel method is proposed in this article. The proposed method for anomaly identification is efficient and rapid. In the beginning, Cook's distance was employed to recognize and eliminate outlier observations. After observations are made three statistical models Brown's, Holt's, and winter's models were used for exponential smoothing and were estimated using the provided data. Bollinger Bands with the appropriate parameters were employed to estimate potential changes in the forecasts produced by the models that were put into operation. The estimated traffic model's statistical relationships with its actual variations were then investigated to spot any unusual behaviour that would point to a cyber-attack effort. Additionally, a method for updating common models in the event of substantial fluctuations in real network traffic was suggested. The findings confirmed the effectiveness of the proposed method and the precision of the selection of the appropriate statistical model for the under-study time series. The outcomes validated the effectiveness of the proposed approach and the precision in choosing a suitable statistical model for the time series under investigation.
引用
收藏
页数:7
相关论文
共 50 条
  • [1] Network Intrusion Detection Using Machine Learning Anomaly Detection Algorithms
    Hanifi, Khadija
    Bank, Hasan
    Karsligil, M. Elif
    Yavuz, A. Gokhan
    Guvensan, M. Amac
    2017 25TH SIGNAL PROCESSING AND COMMUNICATIONS APPLICATIONS CONFERENCE (SIU), 2017,
  • [2] Intrusion Detection System using Aggregation of Machine Learning Algorithms
    Arivarasan, K.
    Obaidat, Mohammad S.
    2022 INTERNATIONAL CONFERENCE ON COMPUTER, INFORMATION AND TELECOMMUNICATION SYSTEMS, CITS, 2022, : 123 - 130
  • [3] A Survey on Intrusion Detection System Using Machine Learning Algorithms
    Gulghane, Shital
    Shingate, Vishal
    Bondgulwar, Shivani
    Awari, Gaurav
    Sagar, Parth
    INNOVATIVE DATA COMMUNICATION TECHNOLOGIES AND APPLICATION, 2020, 46 : 670 - 675
  • [4] Intrusion Detection for Cybersecurity of Smart Meters
    Sun, Chih-Che
    Cardenas, D. Jonathan Sebastian
    Hahn, Adam
    Liu, Chen-Ching
    IEEE TRANSACTIONS ON SMART GRID, 2021, 12 (01) : 612 - 622
  • [5] Intrusion Detection System for Smart Meters
    Almakrami, Hussain
    2016 SAUDI ARABIA SMART GRID (SASG), 2016,
  • [6] Intrusion Detection Using Data Fusion and Machine Learning
    Hechmi, Jridi Mohamed
    Khlaifi, Hacen
    Bouatay, Amine
    Zrelli, Amira
    Ezzedine, Tahar
    2018 26TH INTERNATIONAL CONFERENCE ON SOFTWARE, TELECOMMUNICATIONS AND COMPUTER NETWORKS (SOFTCOM), 2018, : 235 - 240
  • [7] Ensemble of Machine Learning Algorithms for Intrusion Detection
    Chou, Te-Shun
    Fan, Jeffrey
    Fan, Sharon
    Makki, Kia
    2009 IEEE INTERNATIONAL CONFERENCE ON SYSTEMS, MAN AND CYBERNETICS (SMC 2009), VOLS 1-9, 2009, : 3976 - +
  • [8] Machine Learning Algorithms In Context Of Intrusion Detection
    Mehmood, Tahir
    Md Rais, Helmi B.
    2016 3RD INTERNATIONAL CONFERENCE ON COMPUTER AND INFORMATION SCIENCES (ICCOINS), 2016, : 369 - 373
  • [9] Intrusion detection and prevention with machine learning algorithms
    Chang, Victor
    Boddu, Sreeja
    Xu, Qianwen Ariel
    Doan, Le Minh Thao
    INTERNATIONAL JOURNAL OF GRID AND UTILITY COMPUTING, 2023, 14 (06) : 617 - 631
  • [10] Using machine learning ensemble method for detection of energy theft in smart meters
    Kawoosa, Asif Iqbal
    Prashar, Deepak
    Faheem, Muhammad
    Jha, Nishant
    Khan, Arfat Ahmad
    IET GENERATION TRANSMISSION & DISTRIBUTION, 2023, 17 (21) : 4794 - 4809