Computing the sum of k largest Laplacian eigenvalues of tricyclic graphs

被引:3
作者
Kumar, Pawan [1 ]
Merajuddin, S. [1 ]
Pirzada, Shariefuddin [2 ]
机构
[1] Aligarh Muslim Univ, Dept Appl Math, Aligarh, Uttar Pradesh, India
[2] Univ Kashmir, Dept Math, Srinagar, Kashmir, India
关键词
Laplacian matrix; Laplacian eigenvalues; Brouwer's conjecture; tricyclic graph; degree sequence; BROUWERS CONJECTURE;
D O I
10.47443/dml.2022.085
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let G(V;E) be a simple graph with | V (G) | = n and | E(G) |= m. If S-k(G) is the sum of k largest Laplacian eigenvalues of G, then Brouwer's conjecture states that S-k(G) <= m + k(k+1)/2 for 1 <= k <= n. The girth of a graph G is the length of a smallest cycle in G. If g is the girth of G, then we show that the mentioned conjecture is true for 1 <= k <= left perpendicular g - 2 /2 right perpendicular. Wang et al. [Math. Comput. Model. 56 (2012) 60-68] proved that Brouwer's conjecture is true for bicyclic and tricyclic graphs whenever 1 <= k <= n with k not equal 3. We settle the conjecture under discussion also for tricyclic graphs having no pendant vertices when k = 3
引用
收藏
页码:14 / 18
页数:5
相关论文
共 16 条
[1]  
Brouwer AE, 2012, UNIVERSITEXT, P1, DOI 10.1007/978-1-4614-1939-6
[2]   On Brouwer's conjecture for the sum of k largest Laplacian eigenvalues of graphs [J].
Chen, Xiaodan .
LINEAR ALGEBRA AND ITS APPLICATIONS, 2019, 578 :402-410
[3]   Improved results on Brouwer's conjecture for sum of the Laplacian eigenvalues of a graph [J].
Chen, Xiaodan .
LINEAR ALGEBRA AND ITS APPLICATIONS, 2018, 557 :327-338
[4]   Upper bounds for the sum of Laplacian eigenvalues of graphs [J].
Du, Zhibin ;
Zhou, Bo .
LINEAR ALGEBRA AND ITS APPLICATIONS, 2012, 436 (09) :3672-3683
[5]   On the sum of the Laplacian eigenvalues of a tree [J].
Fritscher, Eliseu ;
Hoppen, Carlos ;
Rocha, Israel ;
Trevisan, Vilmar .
LINEAR ALGEBRA AND ITS APPLICATIONS, 2011, 435 (02) :371-399
[6]  
Ganie HA, 2021, J RAMANUJAN MATH SOC, V36, P13
[7]   On the Sum of k Largest Laplacian Eigenvalues of a Graph and Clique Number [J].
Ganie, Hilal A. ;
Pirzada, S. ;
Trevisan, Vilmar .
MEDITERRANEAN JOURNAL OF MATHEMATICS, 2021, 18 (01)
[8]   Further developments on Brouwer's conjecture for the sum of Laplacian eigenvalues of graphs [J].
Ganie, Hilal A. ;
Pirzada, S. ;
Rather, Bilal A. ;
Trevisan, Vilmar .
LINEAR ALGEBRA AND ITS APPLICATIONS, 2020, 588 :1-18
[9]   Upper bounds for the sum of Laplacian eigenvalues of a graph and Brouwer's conjecture [J].
Ganie, Hilal A. ;
Pirzada, S. ;
Ul Shaban, Rezwan ;
Li, X. .
DISCRETE MATHEMATICS ALGORITHMS AND APPLICATIONS, 2019, 11 (02)
[10]   On the sum of the Laplacian eigenvalues of a graph and Brouwer's conjecture [J].
Ganie, Hilal A. ;
Alghamdi, Ahmad M. ;
Pirzada, S. .
LINEAR ALGEBRA AND ITS APPLICATIONS, 2016, 501 :376-389