A Rigidity Result for the Robin Torsion Problem

被引:4
作者
Masiello, Alba Lia [1 ]
Paoli, Gloria [2 ]
机构
[1] Univ Napoli Federico II, Dipartimento Matemat & Applicazioni Renato Cacciop, Via Cintia, I-80126 Naples, Italy
[2] Chair Dynam Control & Numer Alexander Humboldt Pro, Dept Data Sci DDS, Cauerstr 11, D-91058 Erlangen, Germany
关键词
Robin boundary conditions; Laplace operator; Rigidity result; Torsion problem; Talenti comparison; ELLIPTIC PROBLEMS; REARRANGEMENTS; EQUATIONS;
D O I
10.1007/s12220-023-01202-3
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let omega subset of R-2 be an open, bounded and Lipschitz set. We consider the torsion problem for the Laplace operator associated to Q with Robin boundary conditions. In this setting, we study the equality case in the Talenti-type comparison, proved in Alvino et al. (Commun Pure Appl Math 76:585-603, 2023).. We prove that the equality is achieved only if omega is a disk and the torsion function u is radial.
引用
收藏
页数:14
相关论文
共 24 条
[21]   Radial symmetry of solutions to diffusion equations with discontinuous nonlinearities [J].
Serra, Joaquim .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2013, 254 (04) :1893-1902
[22]  
Talenti G., 1979, Ann. Mat. Pura Appl., V120, P160
[23]  
Talenti G., 1994, Nonlinear analysis, Function Spaces and applications, VVol.5, P177
[24]  
Weinberger H., 1962, STUDIES MATH ANAL RE, P424