A Rigidity Result for the Robin Torsion Problem

被引:4
作者
Masiello, Alba Lia [1 ]
Paoli, Gloria [2 ]
机构
[1] Univ Napoli Federico II, Dipartimento Matemat & Applicazioni Renato Cacciop, Via Cintia, I-80126 Naples, Italy
[2] Chair Dynam Control & Numer Alexander Humboldt Pro, Dept Data Sci DDS, Cauerstr 11, D-91058 Erlangen, Germany
关键词
Robin boundary conditions; Laplace operator; Rigidity result; Torsion problem; Talenti comparison; ELLIPTIC PROBLEMS; REARRANGEMENTS; EQUATIONS;
D O I
10.1007/s12220-023-01202-3
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let omega subset of R-2 be an open, bounded and Lipschitz set. We consider the torsion problem for the Laplace operator associated to Q with Robin boundary conditions. In this setting, we study the equality case in the Talenti-type comparison, proved in Alvino et al. (Commun Pure Appl Math 76:585-603, 2023).. We prove that the equality is achieved only if omega is a disk and the torsion function u is radial.
引用
收藏
页数:14
相关论文
共 24 条
[1]   Sharp estimates for solutions to elliptic problems with mixed boundary conditions [J].
Alvino, A. ;
Chiacchio, F. ;
Nitsch, C. ;
Trombetti, C. .
JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 2021, 152 :251-261
[2]   Convex symmetrization and applications [J].
Alvino, A ;
Ferone, V ;
Trombetti, G ;
Lions, PL .
ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 1997, 14 (02) :275-293
[3]   A REMARK ON COMPARISON RESULTS VIA SYMMETRIZATION [J].
ALVINO, A ;
LIONS, PL ;
TROMBETTI, G .
PROCEEDINGS OF THE ROYAL SOCIETY OF EDINBURGH SECTION A-MATHEMATICS, 1986, 102 :37-48
[4]  
ALVINO A, 1990, ANN I H POINCARE-AN, V7, P37
[5]   A Talenti Comparison Result for Solutions to Elliptic Problems with Robin Boundary Conditions [J].
Alvino, Angelo ;
Nitsch, Carlo ;
Trombetti, Cristina .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 2023, 76 (03) :585-603
[6]   Comparison results for solutions to p-Laplace equations with Robin boundary conditions [J].
Amato, Vincenzo ;
Gentile, Andrea ;
Masiello, Alba Lia .
ANNALI DI MATEMATICA PURA ED APPLICATA, 2022, 201 (03) :1189-1212
[7]  
Ambrosio Luigi, 2000, Oxford Mathematical Monographs, P434
[8]  
[Anonymous], 1976, Ann. Scuola Norm. Sup. Pisa Cl. Sci.
[9]  
[Anonymous], 2008, Direct Methods in the Calculus of Variations
[10]  
Ashbaugh M.S., 1995, DIFF EQUAT+, P17