Imaging-spectroscopy of a band-split type II solar radio burst with the Murchison Widefield Array

被引:8
|
作者
Bhunia, Shilpi [1 ,2 ]
Carley, Eoin P. P. [1 ]
Oberoi, Divya [3 ]
Gallagher, Peter T. T. [1 ]
机构
[1] Dublin Inst Adv Studies, Astron & Astrophys Sect, Dublin D02 XF86, Ireland
[2] Trinity Coll Dublin, Sch Phys, Coll Green, Dublin, Ireland
[3] Tata Inst Fundamental Res, Natl Ctr Radio Astrophys, Pune 411007, Maharashtra, India
关键词
techniques; imaging spectroscopy; Sun; activity; shock waves; turbulence; SPATIALLY-RESOLVED OBSERVATIONS; CORONAL MAGNETIC-FIELD; SHOCK-WAVES; ELECTRON ACCELERATION; SCATTERING; PROPAGATION; TURBULENCE; EMISSION; CME; CALIBRATION;
D O I
10.1051/0004-6361/202244456
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
Type II solar radio bursts are caused by magnetohydrodynamic (MHD) shocks driven by solar eruptive events such as coronal mass ejections (CMEs). Often, both fundamental and harmonic bands of type II bursts are split into sub-bands, which are generally believed to be coming from upstream and downstream regions of the shock; however, this explanation remains unconfirmed. Here, we present combined results from imaging analyses of type II radio burst band splitting and other fine structures observed by the Murchison Widefield Array (MWA) and extreme ultraviolet observations from Solar Dynamics Observatory (SDO)/Atmospheric Imaging Assembly (AIA) on 28 September 2014. The MWA provides imaging-spectroscopy in the range 80-300 MHz with a time resolution of 0.5 s and frequency resolution of 40 kHz. Our analysis shows that the burst was caused by a piston-driven shock with a driver speed of similar to 112 km s(-1) and shock speed of similar to 580 km s(-1). We provide rare evidence that band splitting is caused by emission from multiple parts of the shock (as opposed to the upstream-downstream hypothesis). We also examine the small-scale motion of type II fine structure radio sources in MWA images, and suggest that this motion may arise because of radio propagation effects from coronal turbulence, and is not due to the physical motion of the shock location. We present a novel technique that uses imaging spectroscopy to directly determine the effective length scale of turbulent density perturbations, which is found to be 1-2 Mm. The study of the systematic and small-scale motion of fine structures may therefore provide a measure of turbulence in different regions of the shock and corona.
引用
收藏
页数:10
相关论文
共 38 条
  • [21] Evidence for Oscillating Two-stream Instability and Spatial Collapse of Langmuir Waves in a Solar Type II Radio Burst
    Thejappa, G.
    MacDowall, R. J.
    ASTROPHYSICAL JOURNAL, 2019, 883 (02)
  • [22] A type II radio burst associated with solar filament-filament interaction
    Zhang, Liang
    Zheng, Ruisheng
    Chen, Yao
    ASTRONOMY & ASTROPHYSICS, 2024, 691
  • [23] Simultaneous Radio and EUV Imaging of a Multi-lane Coronal Type II Radio Burst
    Feng, S. W.
    Du, G. H.
    Chen, Y.
    Kong, X. L.
    Li, G.
    Guo, F.
    SOLAR PHYSICS, 2015, 290 (04) : 1195 - 1205
  • [24] A BROKEN SOLAR TYPE II RADIO BURST INDUCED BY A CORONAL SHOCK PROPAGATING ACROSS THE STREAMER BOUNDARY
    Kong, X. L.
    Chen, Y.
    Li, G.
    Feng, S. W.
    Song, H. Q.
    Guo, F.
    Jiao, F. R.
    ASTROPHYSICAL JOURNAL, 2012, 750 (02)
  • [25] Automatic Detection of Type II Solar Radio Burst by Using 1-D Convolution Neutral Network
    Cho, Kyung-Suk
    Kim, Junyoung
    Kim, Rok-Soon
    Park, Eunsu
    Kubo, Yuki
    Iwai, Kazumasa
    JOURNAL OF THE KOREAN ASTRONOMICAL SOCIETY, 2023, 56 (02) : 213 - 224
  • [26] ESTIMATING THE HEIGHT OF CMEs ASSOCIATED WITH A MAJOR SEP EVENT AT THE ONSET OF THE METRIC TYPE II RADIO BURST DURING SOLAR CYCLES 23 AND 24
    Maekelae, P.
    Gopalswamy, N.
    Akiyama, S.
    Xie, H.
    Yashiro, S.
    ASTROPHYSICAL JOURNAL, 2015, 806 (01)
  • [27] Sources of the Multi-Lane Type II Solar Radio Burst on 5 November 2014
    Lv, M. S.
    Chen, Y.
    Li, C. Y.
    Zimovets, I.
    Du, G. H.
    Wang, B.
    Feng, S. W.
    Ma, S. L.
    SOLAR PHYSICS, 2017, 292 (12)
  • [28] Interferometric imaging with LOFAR remote baselines of the fine structures of a solar type-IIIb radio burst
    Zhang, PeiJin
    Zucca, Pietro
    Sridhar, Sarrvesh Seethapuram
    Wang, ChuanBing
    Bisi, Mario M.
    Dabrowski, Bartosz
    Krankowski, Andrzej
    Mann, Gottfried
    Magdalenic, Jasmina
    Morosan, Diana E.
    Vocks, Christian
    ASTRONOMY & ASTROPHYSICS, 2020, 639
  • [29] Radio Spectroscopic Imaging of a Solar Flare Termination Shock: Split-band Feature as Evidence for Shock Compression
    Chen, Bin
    Shen, Chengcai
    Reeves, Katharine K.
    Guo, Fan
    Yu, Sijie
    ASTROPHYSICAL JOURNAL, 2019, 884 (01)
  • [30] Shock location and CME 3D reconstruction of a solar type II radio burst with LOFAR
    Zucca, P.
    Morosan, D. E.
    Rouillard, A. P.
    Fallows, R.
    Gallagher, P. T.
    Magdalenic, J.
    Klein, K-L
    Mann, G.
    Vocks, C.
    Carley, E. P.
    Bisi, M. M.
    Kontar, E. P.
    Rothkaehl, H.
    Dabrowski, B.
    Krankowski, A.
    Anderson, J.
    Asgekar, A.
    Bell, M. E.
    Bentum, M. J.
    Best, P.
    Blaauw, R.
    Breitling, F.
    Broderick, J. W.
    Brouw, W. N.
    Brueggen, M.
    Butcher, H. R.
    Ciardi, B.
    de Geus, E.
    Deller, A.
    Duscha, S.
    Eisloeffel, J.
    Garrett, M. A.
    Griessmeier, J. M.
    Gunst, A. W.
    Heald, G.
    Hoeft, M.
    Horandel, J.
    Iacobelli, M.
    Juette, E.
    Karastergiou, A.
    van Leeuwen, J.
    McKay-Bukowski, D.
    Mulder, H.
    Munk, H.
    Nelles, A.
    Orru, E.
    Paas, H.
    Pandey, V. N.
    Pekal, R.
    Pizzo, R.
    ASTRONOMY & ASTROPHYSICS, 2018, 615