Perfluorooctane sulfonate promotes atherosclerosis by modulating M1 polarization of macrophages through the NF-ΚB pathway

被引:17
|
作者
Wang, Dan [1 ]
Tan, Zhenzhen [1 ]
Yang, Jing [1 ]
Li, Longfei [1 ]
Li, Haoran [1 ]
Zhang, Huaxing [2 ]
Liu, Heqiong [1 ]
Liu, Yi [1 ]
Wang, Lei [3 ]
Li, Qian [4 ,6 ]
Guo, Huicai [1 ,5 ,7 ]
机构
[1] Hebei Med Univ, Dept Toxicol, Shijiazhuang, Peoples R China
[2] Hebei Med Univ, Core Facil & Ctr, Shijiazhuang, Peoples R China
[3] Hebei Med Univ, Dept Med Chem, Shijiazhuang, Peoples R China
[4] Hebei Med Univ, Dept Physiol, Shijiazhuang, Peoples R China
[5] Hebei Key Lab Environm & Human Hlth, Shijiazhuang, Peoples R China
[6] Hebei Med Univ, Dept Physiol, 361 East Zhongshan Rd, Shijiazhuang 050017, Hebei, Peoples R China
[7] Hebei Med Univ, Sch Publ Hlth, Dept Toxicol, 361 East Zhongshan Rd, Shijiazhuang 050017, Hebei, Peoples R China
基金
中国国家自然科学基金;
关键词
Perfluorooctane sulfonate; Atherogenesis; Inflammation; Macrophage; Nuclear factor-kappa B; INTIMA-MEDIA THICKNESS; LIVER-X-RECEPTOR; PERFLUOROALKYL SUBSTANCES; ACTIVATION; PFOS; EXPOSURE; ASSOCIATION; HEALTH; MOUSE; PHOSPHORYLATION;
D O I
10.1016/j.ecoenv.2022.114384
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Perfluorooctane sulfonate (PFOS) is a widely used and distributed perfluorinated compounds and is reported to be harmful to cardiovascular health; however, the direct association between PFOS exposure and atherosclerosis and the underlying mechanisms remain unknown. Therefore, this study aimed to investigate the effects of PFOS exposure on the atherosclerosis progression and the underlying mechanisms. PFOS was administered through oral gavage to apolipoprotein E-deficient (ApoE-/-) mice for 12 weeks. PFOS exposure significantly increased pulse wave velocity (PWV) and intima-media thickness (IMT), increased aortic plaque burden and vulnerability, and elevated serum lipid and inflammatory cytokine levels. PFOS promoted aortic and RAW264.7 M1 macro-phage polarization, which increased the secretion of nitric oxide synthase (iNOS) and pro-inflammatory factors (tumor necrosis factor-alpha [TNF-alpha], interleukin-6 [IL-6], and interleukin-1 beta [IL-1 beta]), and suppressed M2 macro-phage polarization, which decreased the expression of CD206, arginine I (Arg-1), and interleukin-10 (IL-10). Moreover, PFOS activated nuclear factor-kappa B (NF-kappa B) in the aorta and macrophages. BAY11-7082 was used to inhibit NF-kappa B-alleviated M1 macrophage polarization and the inflammatory response induced by PFOS in RAW264.7 macrophages. Our results are the first to reveal the acceleratory effect of PFOS on the atherosclerosis progression in ApoE-/-mice, which is associated with the NF-kappa B activation of macrophages to M1 polarization to induce inflammation.
引用
收藏
页数:13
相关论文
共 50 条
  • [1] Mincle Maintains M1 Polarization of Macrophages and Contributes to Renal Aging Through the Syk/NF-κB Pathway
    Sun, Lingshuang
    Liu, Hua
    Shi, Kehui
    Wei, Meng
    Jiang, Hongli
    JOURNAL OF BIOCHEMICAL AND MOLECULAR TOXICOLOGY, 2024, 38 (12)
  • [2] Porphyromonas gingivalis promote microglia M1 polarization through the NF-кB signaling pathway
    Li, Xue
    Yao, Chao
    Lan, Dongmei
    Chen, Yurong
    Wang, Yan
    Qi, Shengcai
    HELIYON, 2024, 10 (15)
  • [3] Mechanical stretch promotes tumoricidal M1 polarization via the FAK/NF-κB signaling pathway
    Shan, Shengzhou
    Fang, Bin
    Zhang, Yifan
    Wang, Chuandong
    Zhou, Jia
    Niu, Chenguang
    Gao, Ya
    Zhao, Danyang
    He, Jiahao
    Wang, Jing
    Zhang, Xiaoling
    Li, Qingfeng
    FASEB JOURNAL, 2019, 33 (12) : 13254 - 13266
  • [4] Dihydromyricetin Inhibits M1 Macrophage Polarization in Atherosclerosis by Modulating miR-9-Mediated SIRT1/NF-κB Signaling Pathway
    Yang, Zhousheng
    Li, Tianyu
    Wang, Chunyan
    Meng, Mingyu
    Tan, Shenglan
    Chen, Lei
    MEDIATORS OF INFLAMMATION, 2023, 2023
  • [5] Parthenolide promotes the repair of spinal cord injury by modulating M1/M2 polarization via the NF-κB and STAT 1/3 signaling pathway
    Tao Gaojian
    Qian Dingfei
    Li Linwei
    Wang Xiaowei
    Zhou Zheng
    Liu Wei
    Zhu Tong
    Ning Benxiang
    Qian Yanning
    Zhou Wei
    Chen Jian
    CELL DEATH DISCOVERY, 2020, 6 (01)
  • [6] ADAMDEC1 promotes skin inflammation in rosacea via modulating the polarization of M1 macrophages
    Liu, Tangxiele
    Deng, Zhili
    Xie, Hongfu
    Chen, Mengting
    Xu, San
    Peng, Qinqin
    Sha, Ke
    Xiao, Wenqin
    Zhao, Zhixiang
    Li, Ji
    BIOCHEMICAL AND BIOPHYSICAL RESEARCH COMMUNICATIONS, 2020, 521 (01) : 64 - 71
  • [7] Lonicerin alleviates the progression of experimental rheumatoid arthritis by downregulating M1 macrophages through the NF-κB signaling pathway
    Yang, Xiaojiang
    Qian, Hong
    Meng, Jia
    Jiang, Hui
    Yuan, Tao
    Yang, Shaoqiang
    Luo, Yibin
    Bao, Ninrong
    Zhao, Jianning
    Wang, Dongsheng
    PHYTOTHERAPY RESEARCH, 2023, 37 (09) : 3939 - 3950
  • [8] Isomeranzin suppresses inflammation by inhibiting M1 macrophage polarization through the NF-κB and ERK pathway
    Xu, Ge
    Feng, Lili
    Song, Pingping
    Xu, Fang
    Li, Ang
    Wang, Yubin
    Shen, Yan
    Wu, Xuefeng
    Luo, Qiong
    Wu, Xingxin
    Sun, Yang
    Wu, Xudong
    Xu, Qiang
    INTERNATIONAL IMMUNOPHARMACOLOGY, 2016, 38 : 175 - 185
  • [9] Naringin protects against perfluorooctane sulfonate-induced liver injury by modulating NRF2 and NF-κB in mice
    Lv, Zehui
    Wu, Wenyao
    Ge, Shuna
    Jia, Rui
    Lin, Tingting
    Yuan, Yangyang
    Kuang, Haibin
    Yang, Bei
    Wu, Lei
    Wei, Jie
    Zhang, Dalei
    INTERNATIONAL IMMUNOPHARMACOLOGY, 2018, 65 : 140 - 147
  • [10] Ganoderic acids alleviate atherosclerosis by inhibiting macrophage M1 polarization via TLR4/MyD88/NF-κB signaling pathway
    Quan, Ya-zhu
    Ma, Ang
    Ren, Chao-qun
    An, Yong-pan
    Qiao, Pan-shuang
    Gao, Cai
    Zhang, Yu-kun
    Li, Xiao-wei
    Lin, Si -mei
    Li, Nan-nan
    Chen, Di-long
    Pan, Yan
    Zhou, Hong
    Lin, Dong-mei
    Lin, Shu-qian
    Li, Min
    Yang, Bao-xue
    ATHEROSCLEROSIS, 2024, 391