Machine Learning for Emergency Management: A Survey and Future Outlook

被引:11
|
作者
Kyrkou, Christos [1 ]
Kolios, Panayiotis [1 ]
Theocharides, Theocharis [1 ]
Polycarpou, Marios [1 ]
机构
[1] Univ Cyprus, KIOS Res & Innovat Ctr Excellence, Elect & Comp Engn Dept, CY-1678 Nicosia, Cyprus
基金
欧盟地平线“2020”;
关键词
Decision-making; deep learning; disaster; emergency management; emergency response; machine learning (ML); recognition; situational awareness; NEURAL-NETWORKS; ARTIFICIAL-INTELLIGENCE; FIRE DETECTION; FOREST-FIRE; DISASTER; TIME; IOT; PREDICTION; FRAMEWORK; SYSTEM;
D O I
10.1109/JPROC.2022.3223186
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Emergency situations encompassing natural and human-made disasters, as well as their cascading effects, pose serious threats to society at large. Machine learning (ML) algorithms are highly suitable for handling the large volumes of spatiotemporal data that are generated during such situations. Hence, over the years, they have been utilized in emergency management to aid first responders and decision-makers in such situations and ultimately improve disaster prevention, preparedness, response, and recovery. In this survey article, we highlight relevant work in this area by first focusing on the commonalities of emergency management applications and key challenges that ML algorithms need to address. Then, we present a categorization of relevant works across all the emergency management phases and operations, highlighting the main algorithms used. Based on our review, we conclude that ML algorithms can provide the basis for tackling different activities across the emergency management phases with a unified algorithmic framework that can solve a large set of problems. Finally, through the systematic literature review, we provide promising future directions for utilizing ML algorithms more effectively in emergency management applications. More importantly, we identify the need for better generalization of algorithms, improved explainability, and trustworthiness of ML algorithms with respect to the emergency management personnel, as well as more efficient ways of addressing the challenges associated with building appropriate datasets.
引用
收藏
页码:19 / 41
页数:23
相关论文
共 50 条
  • [21] A Brief Survey of Machine Learning and Deep Learning Techniques for E-Commerce Research
    Zhang, Xue
    Guo, Fusen
    Chen, Tao
    Pan, Lei
    Beliakov, Gleb
    Wu, Jianzhang
    JOURNAL OF THEORETICAL AND APPLIED ELECTRONIC COMMERCE RESEARCH, 2023, 18 (04): : 2188 - 2216
  • [22] Artificial intelligence and machine learning in emergency medicine
    Stewart, Jonathon
    Sprivulis, Peter
    Dwivedi, Girish
    EMERGENCY MEDICINE AUSTRALASIA, 2018, 30 (06) : 870 - 874
  • [23] Exploring the State of Machine Learning and Deep Learning in Medicine: A Survey of the Italian Research Community
    Bottrighi, Alessio
    Pennisi, Marzio
    INFORMATION, 2023, 14 (09)
  • [24] Is Machine Learning the Future of Theoretical Chemistry?
    Berka, Karel
    Srsen, Stepan
    Slavicek, Petr
    CHEMICKE LISTY, 2018, 112 (10): : 640 - 647
  • [25] Artificial Intelligence and Machine Learning in Energy Conversion and Management
    Mira, Konstantinos
    Bugiotti, Francesca
    Morosuk, Tatiana
    ENERGIES, 2023, 16 (23)
  • [26] Machine Learning and Antibiotic Management
    Maviglia, Riccardo
    Michi, Teresa
    Passaro, Davide
    Raggi, Valeria
    Bocci, Maria Grazia
    Piervincenzi, Edoardo
    Mercurio, Giovanna
    Lucente, Monica
    Murri, Rita
    ANTIBIOTICS-BASEL, 2022, 11 (03):
  • [27] Comprehensive Survey of Machine Learning Systems for COVID-19 Detection
    Alsaaidah, Bayan
    Al-Hadidi, Moh'd Rasoul
    Al-Nsour, Heba
    Masadeh, Raja
    AlZubi, Nael
    JOURNAL OF IMAGING, 2022, 8 (10)
  • [28] Machine Learning Applications in Manufacturing-Challenges, Trends, and Future Directions
    Manta-Costa, Alexandre
    Araujo, Sara Oleiro
    Peres, Ricardo Silva
    Barata, Jose
    IEEE OPEN JOURNAL OF THE INDUSTRIAL ELECTRONICS SOCIETY, 2024, 5 : 1085 - 1103
  • [29] Machine learning for autonomous vehicle's trajectory prediction: A comprehensive survey, challenges, and future research directions
    Bharilya, Vibha
    Kumar, Neetesh
    VEHICULAR COMMUNICATIONS, 2024, 46
  • [30] A Survey of Machine and Deep Learning Methods for Privacy Protection in the Internet of Things
    Rodriguez, Eva
    Otero, Beatriz
    Canal, Ramon
    SENSORS, 2023, 23 (03)