Hot hole transfer at the plasmonic semiconductor/semiconductor interface

被引:11
作者
Gutierrez, Mario [1 ,2 ]
Lian, Zichao [3 ]
Cohen, Boiko [1 ,2 ]
Sakamoto, Masanori [3 ]
Douhal, Abderrazzak [1 ,2 ]
机构
[1] Univ Castilla La Mancha, Fac Ciencias Ambientales & Bioquim, Dept Quim Fis, Ave Carlos III S-N, Toledo 45071, Spain
[2] Univ Castilla La Mancha, INAMOL, Ave Carlos III S-N, Toledo 45071, Spain
[3] Kyoto Univ, Inst Chem Res, Uji, Kyoto 6110011, Japan
关键词
COPPER SULFIDE NANOCRYSTALS; SEMICONDUCTOR; RESONANCES; DYNAMICS; PHASE; GOLD; SIZE;
D O I
10.1039/d2nr05044g
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Localized surface plasmon resonance (LSPR)-induced hot-carrier transfer provides an attractive alternative for light-harvesting using the full solar spectrum. This defect-mediated hot-carrier transfer is identical at the plasmonic semiconductor/semiconductor interface and can overcome the low efficiency of plasmonic energy conversion, thus boosting the efficiency of IR-light towards energy conversion. Here, using femtosecond transient absorption (TA) measurements, we directly observe the ultrafast non-radiative carrier dynamics of LSPR-driven hot holes created in CuS nanocrystals (NCs) and CuS/CdS hetero nanocrystals (HNCs). We demonstrate that in the CuS NCs, the relaxation dynamics follows multiple relaxation pathways. Two trap states are populated by the LSPR-induced hot holes in times (100-500 fs) that efficiently compete with the conventional LSPR mechanism (250 fs). The trapped hot holes intrinsically relax in 20-40 ps and then decay in 80 ns and 700 ns. In the CuS/CdS HNCs, once the CuS trap states have been populated by the LSPR-generated hot holes, the holes get transferred through plasmon induced transit hole transfer (PITCT) mechanism in 200-300 ps to the CdS acceptor phase and relax in 1-8 and 40-50 mu s. The LSPR-recovery shows a weak excitation wavelength and fluence dependence, while the dynamics of the trap states remains largely unaffected. The direct observation of formation and decay processes of trap states and hole transfer from trap states provides important insight into controlling the LSPR-induced relaxation of degenerate semiconductors.
引用
收藏
页码:657 / 666
页数:10
相关论文
共 42 条
[1]   Localized Surface Plasmon Resonance in Semiconductor Nanocrystals [J].
Agrawal, Ankit ;
Cho, Shin Hum ;
Zandi, Omid ;
Ghosh, Sandeep ;
Johns, Robert W. ;
Milliron, Delia J. .
CHEMICAL REVIEWS, 2018, 118 (06) :3121-3207
[2]   Plasmon-induced hot-hole generation and extraction at nano-heterointerfaces for photocatalysis [J].
Ahlawat, Monika ;
Mittal, Diksha ;
Govind Rao, Vishal .
COMMUNICATIONS MATERIALS, 2021, 2 (01)
[3]   Chalcogenide mechanochemistry in materials science: insight into synthesis and applications (a review) [J].
Balaz, P. ;
Balaz, M. ;
Achimovicova, M. ;
Bujinakova, Z. ;
Dutkova, E. .
JOURNAL OF MATERIALS SCIENCE, 2017, 52 (20) :11851-11890
[4]  
Brongersma ML, 2015, NAT NANOTECHNOL, V10, P25, DOI [10.1038/NNANO.2014.311, 10.1038/nnano.2014.311]
[5]   Energy Level Modification in Lead Sulfide Quantum Dot Thin Films through Ligand Exchange [J].
Brown, Patrick R. ;
Kim, Donghun ;
Lunt, Richard R. ;
Zhao, Ni ;
Bawendi, Moungi G. ;
Grossman, Jeffrey C. ;
Bulovic, Vladimir .
ACS NANO, 2014, 8 (06) :5863-5872
[6]   Determination of a localized surface plasmon resonance mode of Cu7S4 nanodisks by plasmon coupling [J].
Chen, L. ;
Sakamoto, M. ;
Sato, R. ;
Teranishi, T. .
FARADAY DISCUSSIONS, 2015, 181 :355-364
[7]   Hot Charge Carrier Transmission from Plasmonic Nanostructures [J].
Christopher, Phillip ;
Moskovits, Martin .
ANNUAL REVIEW OF PHYSICAL CHEMISTRY, VOL 68, 2017, 68 :379-398
[8]  
Clavero C, 2014, NAT PHOTONICS, V8, P95, DOI [10.1038/NPHOTON.2013.238, 10.1038/nphoton.2013.238]
[9]   Compound Copper Chalcogenide Nanocrystals [J].
Coughlan, Claudia ;
Ibanez, Maria ;
Dobrozhan, Oleksandr ;
Singh, Ajay ;
Cabot, Andreu ;
Ryan, Kevin M. .
CHEMICAL REVIEWS, 2017, 117 (09) :5865-6109
[10]   Insight into plasmonic hot-electron transfer and plasmon molecular drive: new dimensions in energy conversion and nanofabrication [J].
Furube, Akihiro ;
Hashimoto, Shuichi .
NPG ASIA MATERIALS, 2017, 9 :e454-e454