Congruences for odd class numbers of quadratic fields with odd discriminant

被引:1
|
作者
Kim, Jigu [1 ]
Mizuno, Yoshinori [2 ]
机构
[1] Ewha Womans Univ, Inst Math Sci, Seoul, South Korea
[2] Tokushima Univ, Grad Sch Technol Ind & Social Sci, Tokushima, Japan
基金
新加坡国家研究基金会;
关键词
Class numbers; Quadratic fields; Hirzebruch sums;
D O I
10.1007/s11139-022-00673-2
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
For any distinct two primes p(1) equivalent to p(2) equivalent to 3 (mod 4), let h(-p(1)), h(-p(2)) and h(p(1)p(2)) be the class numbers of the quadratic fields Q(root-p(1)), Q(root-p(2)) and Q(root p(1)p(2)), respectively. Let omega(p1p2) := (1 + root p(1)p(2))/2 and let Psi(omega(p1p2)) be the Hirzebruch sum of omega(p1p2). We show that h(-p(1))h(-p(2)) equivalent to h(p(1)p(2))Psi(omega(p1p2))/n (mod 8), where n = 6 (respectively, n = 2) if min p1, p2 > 3 (respectively, otherwise). We also consider the real quadratic order with conductor 2 in Q(root p(1)p(2)).
引用
收藏
页码:939 / 963
页数:25
相关论文
共 50 条
  • [41] RAY CLASS GROUPS OF QUADRATIC AND CYCLOTOMIC FIELDS
    Hoelscher, Jing Long
    INTERNATIONAL JOURNAL OF NUMBER THEORY, 2010, 6 (05) : 1169 - 1182
  • [42] Quadratic fields with noncyclic 5-or 7-class groups
    Byeon, Dongho
    RAMANUJAN JOURNAL, 2009, 19 (01) : 71 - 77
  • [43] ON THE COMPUTATION OF CLASS NUMBERS OF REAL ABELIAN FIELDS
    Hakkarainen, Tuomas
    MATHEMATICS OF COMPUTATION, 2009, 78 (265) : 555 - 573
  • [44] On the Plus Parts of the Class Numbers of Cyclotomic Fields
    Chakraborty, Kalyan
    Hoque, Azizul
    CHINESE ANNALS OF MATHEMATICS SERIES B, 2025, 46 (02) : 261 - 270
  • [45] REMARK ON AVERAGE OF CLASS NUMBERS OF FUNCTION FIELDS
    Jung, Hwanyup
    KOREAN JOURNAL OF MATHEMATICS, 2013, 21 (04): : 365 - 374
  • [46] Missing Class Groups and Class Number Statistics for Imaginary Quadratic Fields
    Holmin, S.
    Jones, N.
    Kurlberg, P.
    McLeman, C.
    Petersen, K.
    EXPERIMENTAL MATHEMATICS, 2019, 28 (02) : 233 - 254
  • [47] REMARKS ON QUADRATIC FIELDS WITH NONCYCLIC IDEAL CLASS GROUPS
    Kim, Kwang-Seob
    TAIWANESE JOURNAL OF MATHEMATICS, 2015, 19 (05): : 1387 - 1399
  • [48] EXPONENT OF CLASS GROUP OF CERTAIN IMAGINARY QUADRATIC FIELDS
    Chakraborty, Kalyan
    Hoque, Azizul
    CZECHOSLOVAK MATHEMATICAL JOURNAL, 2020, 70 (04) : 1167 - 1178
  • [49] Quadratic fields with cyclic 2-class groups
    Dominguez, Carlos
    Miller, Steven J.
    Wong, Siman
    JOURNAL OF NUMBER THEORY, 2013, 133 (03) : 926 - 939
  • [50] Dirichlet series associated with square of class numbers of binary quadratic forms
    Yoshinori Mizuno
    Mathematische Zeitschrift, 2012, 272 : 1115 - 1135