Congruences for odd class numbers of quadratic fields with odd discriminant

被引:1
作者
Kim, Jigu [1 ]
Mizuno, Yoshinori [2 ]
机构
[1] Ewha Womans Univ, Inst Math Sci, Seoul, South Korea
[2] Tokushima Univ, Grad Sch Technol Ind & Social Sci, Tokushima, Japan
基金
新加坡国家研究基金会;
关键词
Class numbers; Quadratic fields; Hirzebruch sums;
D O I
10.1007/s11139-022-00673-2
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
For any distinct two primes p(1) equivalent to p(2) equivalent to 3 (mod 4), let h(-p(1)), h(-p(2)) and h(p(1)p(2)) be the class numbers of the quadratic fields Q(root-p(1)), Q(root-p(2)) and Q(root p(1)p(2)), respectively. Let omega(p1p2) := (1 + root p(1)p(2))/2 and let Psi(omega(p1p2)) be the Hirzebruch sum of omega(p1p2). We show that h(-p(1))h(-p(2)) equivalent to h(p(1)p(2))Psi(omega(p1p2))/n (mod 8), where n = 6 (respectively, n = 2) if min p1, p2 > 3 (respectively, otherwise). We also consider the real quadratic order with conductor 2 in Q(root p(1)p(2)).
引用
收藏
页码:939 / 963
页数:25
相关论文
共 16 条
[1]  
[Anonymous], 1969, GESAMMELTE WERKE, P219
[2]  
[Anonymous], 1973, Enseign. Math.
[3]  
Bosma W., 1996, J THEORIE NOMBRES BO, V8, P283, DOI DOI 10.5802/JTNB.170
[4]   Some congruences connecting quadratic class numbers with continued fractions [J].
Cheng, Weidong ;
Guo, Xuejun .
ACTA ARITHMETICA, 2019, 191 (04) :309-340
[5]   Proof of a conjecture of Guy on class numbers [J].
Chua, Lynn ;
Gunby, Benjamin ;
Park, Soohyun ;
Yuan, Allen .
INTERNATIONAL JOURNAL OF NUMBER THEORY, 2015, 11 (04) :1345-1355
[6]  
Dirichlet P.G.L., 1834, EINIGE NEUE SATZE UN, P649
[7]  
Halter-Koch F., 2013, Quadratic Irrationals. An Introduction to Classical Number Theory
[8]   Genus character L-functions of quadratic orders and class numbers [J].
Kaneko, Masanobu ;
Mizuno, Yoshinori .
JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 2020, 102 (01) :69-98
[9]  
Lang H., 1976, ACTA ARITH, V28, P419, DOI [DOI 10.4064/AA-28-4-419-428, 10.4064/aa-28-4-419-428]
[10]  
LU HW, 1991, CHINESE SCI BULL, V36, P1145