Connecting the unstable region of the entropy to the pattern of the Fisher zeros map

被引:0
作者
Rocha, J. C. S. [1 ]
Costa, B., V [2 ]
机构
[1] Univ Fed Ouro Preto, Dept Fis, ICEB, BR-35402136 Ouro Preto, MG, Brazil
[2] Univ Fed Minas Gerais, Dept Fis, Lab Simulacao, ICEx, BR-31720901 Belo Horizonte, MG, Brazil
来源
JOURNAL OF STATISTICAL MECHANICS-THEORY AND EXPERIMENT | 2024年 / 2024卷 / 03期
关键词
classical phase transitions; classical Monte Carlo simulations; PHASE-TRANSITIONS; PARTITION-FUNCTION; TEMPERATURE ZEROS;
D O I
10.1088/1742-5468/ad244c
中图分类号
O3 [力学];
学科分类号
08 ; 0801 ;
摘要
Phase transitions are one of the most interesting natural phenomena. For finite systems, one of the concerns in the topic is how to classify a specific transition as a being of first, second, or even of a higher order according to the Ehrenfest classification. The partition function provides all the thermodynamic information about the physical systems, and a phase transition can be identified using the complex temperature where it is equal to zero. In addition, the pattern of zeros in the complex temperature plane can provide evidence of the transition order. This manuscript presents an analytical and simulational study connecting the microcanonical analysis of the unstable region of the entropy to the canonical partition function zeros. We show that, for the first-order transition, the zeros accumulate uniformly in a vertical line on the complex inverse temperature plane as discussed in previous works. We illustrate our calculations using a 147 particles Lennard-Jones cluster.
引用
收藏
页数:19
相关论文
共 33 条
  • [1] Fast algorithm to calculate density of states
    Belardinelli, R. E.
    Pereyra, V. D.
    [J]. PHYSICAL REVIEW E, 2007, 75 (04):
  • [2] Analysis of the convergence of the 1/t and Wang-Landau algorithms in the calculation of multidimensional integrals
    Belardinelli, R. E.
    Manzi, S.
    Pereyra, V. D.
    [J]. PHYSICAL REVIEW E, 2008, 78 (06):
  • [3] MULTICANONICAL ENSEMBLE - A NEW APPROACH TO SIMULATE 1ST-ORDER PHASE-TRANSITIONS
    BERG, BA
    NEUHAUS, T
    [J]. PHYSICAL REVIEW LETTERS, 1992, 68 (01) : 9 - 12
  • [4] Design, analysis, and implementation of a multiprecision polynomial rootfinder
    Bini, DA
    Fiorentino, G
    [J]. NUMERICAL ALGORITHMS, 2000, 23 (2-3) : 127 - 173
  • [5] Solving secular and polynomial equations: A multiprecision algorithm
    Bini, Dario A.
    Robol, Leonardo
    [J]. JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2014, 272 : 276 - 292
  • [6] Boltzmann L., 2003, The Kinetic Theory of Gases: An Anthology of Classic Papers with Historical Commentary, P262, DOI [10.1142/p281, DOI 10.1142/P281]
  • [7] Classification of phase transitions in small systems
    Borrmann, P
    Mülken, O
    Harting, J
    [J]. PHYSICAL REVIEW LETTERS, 2000, 84 (16) : 3511 - 3514
  • [8] Wang-Landau sampling: Improving accuracy
    Caparica, A. A.
    Cunha-Netto, A. G.
    [J]. PHYSICAL REVIEW E, 2012, 85 (04):
  • [9] Finding the dominant zero of the energy probability distribution
    Carvalho, J. J.
    Mota, A. L.
    [J]. INTERNATIONAL JOURNAL OF MODERN PHYSICS C, 2021, 32 (12):
  • [10] Energy probability distribution zeros: A route to study phase transitions
    Costa, B. V.
    Mol, L. A. S.
    Rocha, J. C. S.
    [J]. COMPUTER PHYSICS COMMUNICATIONS, 2017, 216 : 77 - 83