KRAS(G12D) drives lepidic adenocarcinoma through stem-cell reprogramming

被引:13
|
作者
Juul, Nicholas H. [1 ,2 ]
Yoon, Jung-Ki [1 ,2 ]
Martinez, Marina C. [2 ]
Rishi, Neha [2 ]
Kazadaeva, Yana I. [1 ,2 ]
Morri, Maurizio [3 ]
Neff, Norma F. [3 ]
Trope, Winston L. [4 ]
Shrager, Joseph B. [4 ]
Sinha, Rahul [2 ]
Desai, Tushar J. [1 ,2 ]
机构
[1] Stanford Univ, Dept Med, Sch Med, Div Pulm Allergy & Crit Care, Stanford, CA 94305 USA
[2] Stanford Univ, Inst Stem Cell Biol & Regenerat Med, Sch Med, Stanford, CA 94305 USA
[3] Chan Zuckerberg Biohub, Stanford, CA USA
[4] Stanford Univ, Div Thorac Surg, Sch Med, Stanford, CA USA
基金
美国国家卫生研究院;
关键词
LUNG-CANCER; INTERNATIONAL ASSOCIATION; ENRICHMENT ANALYSIS; BETA-CATENIN; PROGRESSION; PROGENITOR; EXPRESSION; CLASSIFICATION; POPULATIONS; ACTIVATION;
D O I
10.1038/s41586-023-06324-w
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Many cancers originate from stem or progenitor cells hijacked by somatic mutations that drive replication, exemplified by adenomatous transformation of pulmonary alveolar epithelial type II (AT2) cells(1). Here we demonstrate a different scenario: expression of KRAS(G12D) in differentiated AT1 cells reprograms them slowly and asynchronously back into AT2 stem cells that go on to generate indolent tumours. Like human lepidic adenocarcinoma, the tumour cells slowly spread along alveolar walls in a non-destructive manner and have low ERK activity. We find that AT1 and AT2 cells act as distinct cells of origin and manifest divergent responses to concomitant WNT activation and KRAS(G12D) induction, which accelerates AT2-derived but inhibits AT1-derived adenoma proliferation. Augmentation of ERK activity in KRAS(G12D)induced AT1 cells increases transformation efficiency, proliferation and progression from lepidic to mixed tumour histology. Overall, we have identified a new cell of origin for lung adenocarcinoma, the AT1 cell, which recapitulates features of human lepidic cancer. In so doing, we also uncover a capacity for oncogenic KRAS to reprogram a differentiated and quiescent cell back into its parent stem cell en route to adenomatous transformation. Our work further reveals that irrespective of a given cancer's current molecular profile and driver oncogene, the cell of origin exerts a pervasive and perduring influence on its subsequent behaviour.
引用
收藏
页码:860 / +
页数:19
相关论文
共 50 条
  • [41] The Oxidative Drug Combination for Suppressing KRAS G12D Inducible Tumour Growth
    Begimbetova, Dinara
    Kukanova, Assiya
    Fazyl, Fatima
    Manekenova, Kenzhekyz
    Omarov, Talgat
    Burska, Agata N.
    Khamijan, Medina
    Gulyayev, Alexandr
    Yermekbayeva, Bakytgul
    Makishev, Abay
    Saliev, Timur
    Batyrbekov, Kanat
    Aitbayev, Chokan
    Spatayev, Zhanat
    Sarbassov, Dos
    BIOMED RESEARCH INTERNATIONAL, 2022, 2022
  • [42] Rational discovery of a cancer neoepitope harboring the KRAS G12D driver mutation
    Peng Bai
    Qiuping Zhou
    Pengcheng Wei
    Hua Bai
    Sanny K. Chan
    John W. Kappler
    Philippa Marrack
    Lei Yin
    Science China Life Sciences, 2021, 64 : 2144 - 2152
  • [43] Autopsy case of linear nevus sebaceous syndrome with KRAS (G12D) mutation
    Ohishi, Akira
    Enomoto, Yasunori
    Iwafuchi, Hideto
    Meguro, Shiori
    Kosugi, Isao
    Baba, Satoshi
    Iwashita, Toshihide
    Segawa, Yuki
    Ueno, Daizo
    Iijima, Shigeo
    PATHOLOGY INTERNATIONAL, 2024, 74 (09) : 538 - 545
  • [44] Identification and optimization of chemical inhibitors that directly target KRAS G12D mutant
    Tian, Xiaohong
    Geng, Guoyan
    Wu, Jian Hui
    CANCER RESEARCH, 2018, 78 (13)
  • [45] Not all treated KRAS-mutant pancreatic adenocarcinomas are equal: KRAS G12D and survival outcome
    Ardalan, Bach
    Ciner, Aaron
    Baca, Yasmine
    Darabi, Sourat
    Kasi, Anup
    Lou, Emil
    Azqueta, Jose Ignacio
    Xiu, Joanne
    Nabhan, Chadi
    Shields, Anthony F.
    Aguirre, Andrew
    Singh, Harshabad
    Shroff, Rachna T.
    Pishvaian, Michael J.
    Goel, Sanjay
    JOURNAL OF CLINICAL ONCOLOGY, 2023, 41 (16)
  • [46] Exploring the therapeutic potential of precision T-Cell Receptors (TCRs) in targeting KRAS G12D cancer through in vitro development
    Zheng, Weitao
    Jiang, Dong
    Chen, Songen
    Wu, Meiling
    Yan, Baoqi
    Zhai, Jiahui
    Shi, Yunqiang
    Xie, Bin
    Xie, Xingwang
    Hu, Kanghong
    Ma, Wenxue
    ONCOLOGY RESEARCH, 2024, 32 (12) : 1837 - 1850
  • [47] Pancreatitis promotes oncogenic Kras(G12D)-induced pancreatic transformation through activation of Nupr1
    Grasso, Daniel
    Garcia, Maria Noe
    Hamidi, Tewfik
    Cano, Carla
    Calvo, Ezequiel
    Lomberk, Gwen
    Urrutia, Raul
    Iovanna, Juan L.
    MOLECULAR & CELLULAR ONCOLOGY, 2014, 1 (01)
  • [48] Mutation-Specific and Common Phosphotyrosine Signatures of KRAS G12D and G13D Alleles
    Tahir, Raiha
    Renuse, Santosh
    Udainiya, Savita
    Madugundu, Anil K.
    Cutler, Jevon A.
    Nirujogi, Raja Sekhar
    Na, Chan Hyun
    Xu, Yaoyu
    Wu, Xinyan
    Pandey, Akhilesh
    JOURNAL OF PROTEOME RESEARCH, 2021, 20 (01) : 670 - 683
  • [49] Structure-Based Design and Synthesis of Potent and Selective KRAS G12D Inhibitors
    Cheng, Hengmiao
    Li, Puhui
    Chen, Ping
    Irimia, Adriana
    Bae, Jae Hyun
    Brooun, Alexei
    Fagan, Patrick
    Lam, Richard
    Lin, Bingzhen
    Zhang, Jingchuan
    Zhan, Xuejun
    Wu, Xu
    Xie, Nan
    Chiang, Gary
    Shoemaker, Robert
    Vernier, Jean-Michel
    ACS MEDICINAL CHEMISTRY LETTERS, 2023, 14 (10): : 1351 - 1357
  • [50] Targeting KRAS G12D mutant tumors with the PROTAC degrader RP03707
    Ji, Xiang
    Li, Huanping
    Wu, Gang
    Zhang, Qiguo
    He, Xiaolin
    Wu, Yanpeng
    Zong, Bing
    Xu, Xiaojin
    Liang, Chao
    Wang, Beibei
    Zhang, Yuwei
    Hu, Qingyao
    Zhou, Jiaxin
    Guo, Weihui
    Bai, Bing
    Wang, Lin
    Ai, Jinchao
    Zhang, Leduo
    Zhou, Honggui
    Sun, Shihao
    Wang, Yijie
    Wang, Youhong
    Fan, Qiming
    Chen, Dawei
    Zhou, Tianlun
    Lu, Jiasheng
    CANCER RESEARCH, 2024, 84 (06)