On vector measures with values in ℓ∞

被引:1
|
作者
Okada, S. [1 ]
Rodriguez, J. [2 ,3 ]
Sanchez-Perez, E. A. [4 ]
机构
[1] 112 Marconi Crescent, Kambah, ACT 2902, Australia
[2] Univ Murcia, Fac Informat, Dept Ingn & Tecnol Computadores, Murcia 30100, Spain
[3] Univ Castilla La Mancha, Escuela Tecn Super Ingn Ind Albacete, Dept Matemat, Albacete 02071, Spain
[4] Univ Politecn Valencia, Inst Univ Matemat Pura & Aplicada, Camino Vera S-N, Valencia 46022, Spain
关键词
vector measure; space of integrable functions; Banach lattice; positively norming set; NORMING SETS; BANACH; INTEGRATION; OPERATORS; SPACES;
D O I
10.4064/sm230319-14-12
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We study some aspects of countably additive vector measures with values in l(infinity) and the Banach lattices of real-valued functions that are integrable with respect to such a vector measure. On the one hand, we prove that if W subset of l*(infinity) is a total set not containing sets equivalent to the canonical basis of l(1)(c), then there is a non-countablyadditive l(infinity)-valued map nu defined on a sigma-algebra such that the composition x* (degrees) nu is countably additive for every x* is an element of W. On the other hand, we show that a Banach lattice E is separable whenever it admits a countable, positively norming set and both E and E* are order continuous. As a consequence, if nu is a countably additive vector measure defined on a sigma-algebra and taking values in a separable Banach space, then the space L-1(nu) is separable whenever L-1(nu)* is order continuous.
引用
收藏
页码:173 / 199
页数:28
相关论文
共 50 条
  • [1] ON VECTOR MEASURES WITH VALUES IN c0(K)
    Rodriguez, Jose
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2025, 153 (02) : 727 - 736
  • [2] Kothe dual of Banach lattices generated by vector measures
    Mastylo, Mieczyslaw
    Sanchez-Perez, Enrique A.
    MONATSHEFTE FUR MATHEMATIK, 2014, 173 (04): : 541 - 557
  • [3] Vector Measures with Values in l∞(Γ) and Interpolation of Banach Lattices
    Sanchez Perez, E. A.
    Szwedek, R.
    JOURNAL OF CONVEX ANALYSIS, 2018, 25 (01) : 75 - 92
  • [4] On Birkhoff integrability for scalar functions and vector measures
    Fernandez, A.
    Mayoral, F.
    Naranjo, F.
    Rodriguez, J.
    MONATSHEFTE FUR MATHEMATIK, 2009, 157 (02): : 131 - 142
  • [5] Interpolation of Vector Measures
    del Campo, Ricardo
    Fernandez, Antonio
    Mayoral, Fernando
    Naranjo, Francisco
    Sanchez-Perez, Enrique A.
    ACTA MATHEMATICA SINICA-ENGLISH SERIES, 2011, 27 (01) : 119 - 134
  • [6] Köthe dual of Banach lattices generated by vector measures
    Mieczysław Mastyło
    Enrique A. Sánchez-Pérez
    Monatshefte für Mathematik, 2014, 173 : 541 - 557
  • [7] Vector measures: where are their integrals?
    Curbera, Guillermo P.
    Delgado, Olvido
    Ricker, Werner J.
    POSITIVITY, 2009, 13 (01) : 61 - 87
  • [8] Isometric factorization of vector measures and applications to spaces of integrable functions
    Nygaard, Olav
    Rodriguez, Jose
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2022, 508 (01)
  • [9] Applications of the Theory of Orlicz Spaces to Vector Measures
    Nowak, M.
    ANALYSIS MATHEMATICA, 2019, 45 (01) : 111 - 120
  • [10] Interpolation of vector measures
    Ricardo del Campo
    Antonio Fernández
    Fernando Mayoral
    Francisco Naranjo
    Enrique A. Sánchez-Pérez
    Acta Mathematica Sinica, English Series, 2011, 27 : 119 - 134