Weak quenched limit theorems for a random walk in a sparse random environment

被引:0
|
作者
Buraczewski, Dariusz [1 ]
Dyszewski, Piotr [1 ]
Kolodziejska, Alicja [1 ]
机构
[1] Univ Wroclaw, Math Inst, Pl Grunwaldzki 2, PL-50384 Wroclaw, Poland
来源
关键词
weak convergence; point processes; regular variation; random walk in a random environment; sparse random environment; DIMENSIONAL RANDOM-WALK; TRANSIENT RANDOM-WALKS;
D O I
10.1214/23-EJP1070
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We study the quenched behaviour of a perturbed version of the simple symmetric random walk on the set of integers. The random walker moves symmetrically with an exception of some randomly chosen sites where we impose a random drift. We show that if the gaps between the marked sites are i.i.d. and regularly varying with a sufficiently small index, then there is no strong quenched limit laws for the position of the random walker. As a consequence we study the quenched limit laws in the context of weak convergence of random measures.
引用
收藏
页数:30
相关论文
共 50 条
  • [31] THE LIMIT DISTRIBUTION OF SINAI RANDOM-WALK IN RANDOM ENVIRONMENT
    KESTEN, H
    PHYSICA A, 1986, 138 (1-2): : 299 - 309
  • [32] Scaling limit theorem for transient random walk in random environment
    Wenming Hong
    Hui Yang
    Frontiers of Mathematics in China, 2018, 13 : 1033 - 1044
  • [33] Functional central limit theorem for a random walk in a random environment
    Piau, D
    ANNALS OF PROBABILITY, 1998, 26 (03): : 1016 - 1040
  • [34] A LIMIT-THEOREM FOR A RANDOM-WALK IN A RANDOM ENVIRONMENT
    LETCHIKOV, AV
    THEORY OF PROBABILITY AND ITS APPLICATIONS, 1988, 33 (02) : 228 - 338
  • [35] Scaling limit theorem for transient random walk in random environment
    Hong, Wenming
    Yang, Hui
    FRONTIERS OF MATHEMATICS IN CHINA, 2018, 13 (05) : 1033 - 1044
  • [36] CONDITIONAL LIMIT THEOREMS FOR THE TERMS OF A RANDOM WALK REVISITED
    Bar-Lev, Shaul K.
    Schulte-Geers, Ernst
    Stadje, Wolfgang
    JOURNAL OF APPLIED PROBABILITY, 2013, 50 (03) : 871 - 882
  • [37] Limit theorems for the left random walk on GLd(R)
    Cuny, Christophe
    Dedecker, Jerome
    Jan, Christophe
    ANNALES DE L INSTITUT HENRI POINCARE-PROBABILITES ET STATISTIQUES, 2017, 53 (04): : 1839 - 1865
  • [38] Limit Theorems for the One-Dimensional Random Walk with Random Resetting to the Maximum
    Van Hao Can
    Thai Son Doan
    Van Quyet Nguyen
    Journal of Statistical Physics, 2021, 183
  • [39] Limit Theorems for the One-Dimensional Random Walk with Random Resetting to the Maximum
    Can, Van Hao
    Doan, Thai Son
    Nguyen, Van Quyet
    JOURNAL OF STATISTICAL PHYSICS, 2021, 183 (02)
  • [40] A note on quenched moderate deviations for Sinai's random walk in random environment
    Comets, Francis
    Popov, Serguei
    ESAIM - Probability and Statistics, 2004, 8 : 56 - 65