Weak quenched limit theorems for a random walk in a sparse random environment

被引:0
作者
Buraczewski, Dariusz [1 ]
Dyszewski, Piotr [1 ]
Kolodziejska, Alicja [1 ]
机构
[1] Univ Wroclaw, Math Inst, Pl Grunwaldzki 2, PL-50384 Wroclaw, Poland
来源
ELECTRONIC JOURNAL OF PROBABILITY | 2024年 / 29卷
关键词
weak convergence; point processes; regular variation; random walk in a random environment; sparse random environment; DIMENSIONAL RANDOM-WALK; TRANSIENT RANDOM-WALKS;
D O I
10.1214/23-EJP1070
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We study the quenched behaviour of a perturbed version of the simple symmetric random walk on the set of integers. The random walker moves symmetrically with an exception of some randomly chosen sites where we impose a random drift. We show that if the gaps between the marked sites are i.i.d. and regularly varying with a sufficiently small index, then there is no strong quenched limit laws for the position of the random walker. As a consequence we study the quenched limit laws in the context of weak convergence of random measures.
引用
收藏
页数:30
相关论文
共 28 条
  • [1] Asymptotic behaviour for random walks in random environments
    Alili, S
    [J]. JOURNAL OF APPLIED PROBABILITY, 1999, 36 (02) : 334 - 349
  • [2] Billingsley P., 1999, Convergence of Probability Measures, V2, DOI DOI 10.1002/9780470316962
  • [3] Bingham N. H., 1989, Regular variation, V27
  • [4] Buraczewski D, 2016, SPRINGER SER OPER RE, P1, DOI 10.1007/978-3-319-29679-1
  • [5] Random walks in a strongly sparse random environment
    Buraczewski, Dariusz
    Dyszewski, Piotr
    Iksanov, Alexander
    Marynych, Alexander
    [J]. STOCHASTIC PROCESSES AND THEIR APPLICATIONS, 2020, 130 (07) : 3990 - 4027
  • [6] Random walks in a moderately sparse random environment
    Buraczewski, Dariusz
    Dyszewski, Piotr
    Iksanov, Alexander
    Marynych, Alexander
    Roitershtein, Alexander
    [J]. ELECTRONIC JOURNAL OF PROBABILITY, 2019, 24 : 1 - 44
  • [7] Precise large deviations for random walk in random environment
    Buraczewski, Dariusz
    Dyszewski, Piotr
    [J]. ELECTRONIC JOURNAL OF PROBABILITY, 2018, 23
  • [8] Tail estimates for one-dimensional random walk in random environment
    Dembo, A
    Peres, Y
    Zeitouni, O
    [J]. COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1996, 181 (03) : 667 - 683
  • [9] Large deviations for random walks under subexponentiality: The big-jump domain
    Denisov, D.
    Dieker, A. B.
    Shneer, V.
    [J]. ANNALS OF PROBABILITY, 2008, 36 (05) : 1946 - 1991
  • [10] Quenched Limit Theorems for Nearest Neighbour Random Walks in 1D Random Environment
    Dolgopyat, D.
    Goldsheid, I.
    [J]. COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2012, 315 (01) : 241 - 277